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Introduction

• Major ecological crisis: French roadmap targets carbon
neutrality in 2050 (Stratégie Nationale Bas Carbone).

• Requires a 40% energy consumption reduction.

• HPC part of the solution: modeling
and improving complex systems

• HPC part of the problem: Frontier
system at ORNL

• More than 1018 floating point
operations per second

• Consumes 21MW: the energy of a
small town (16 000 french houses)
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Environmental impact of computation

• The ICT sector consumes ≈ 5% of the energy wordwide
• It accounts for 1.8% - 2.8% of emitted GHG [Freitag, 2021] :

• Accounts for embodied emissions.
• Shadow energy during the whole life-cycle: mining,
fabrication, transportation, recycling.

• GHG emmissions are only one of the sustainability issues
• rare-earth mining and waste disposal (eg. Agbogbloshie).
• human-right abuses, health issues, pollution.

• This presentation focus on energy consumption of HPC
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What about renewable energies?

• Low-carbon electricity is a limited ressource
• Decarbonation → huge increase in electricity demand

• Heating, Transportation, Industry
• Computing will compete for low-carbon electricity.
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Outline

Energy consumption of HPC

AI energy and computation costs

More frugal computing?
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Energy consumption of HPC



Evolution of processing units [Batten, 2023]

Transistors
(Thousands)

C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp & [Y. Shao, IEEE Micro'15] & [C. Leiserson, Science'20]
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Dennard’s scaling 1970-2005

CMOS Power P = 1/2.C.V2.f︸ ︷︷ ︸
Pdynamic

+ V.Ileak︸ ︷︷ ︸
Pstatic

For each generation, transistors dimensions reduced by 30%,

• Voltage and capacitance reduced by 30%
• Frequency increases: ×1.4 ≈ 1/0.7
• Surface halved: 0.5 ≈ 0.7× 0.7
• Power halved: ∆P = 0.7× 0.72 × 1/0.7 ≈ 0.5

Power per surface unit remains constant but manufacturers
double number of transistors and frequency increases:

• Power efficiency doubles every 1.57 years
• Total power increases
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Multicore 2005-2020

• At current scale, leak currents start increasing (Pstatic ↗).
Power wall slows Dennard’s scaling.

• Computing demand → parallelism and specialization.
• Number of cores increases exponentially since 2005.

• Power efficiency still improving:
• selectively turning-off inactive transistors;
• architecture design optimizations;
• software optimizations.
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AI Accelerators 2020-2024

• For domain specific applications, such as AI, specialized
accelerators are used

• Memory and compute units tuned for a specific problem
(matrix multiplication) ;

• Faster and better power efficiency: GPU, TPU, FPGA, ASIC.
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Analysis of TOP-100 HPC systems

Efficiency and Peak computation exponential increase. 9



Rebound effects

• In 1865, Jevons shows that steam engine improvements
translate into increased coal consumption.

• In HPC, efficiency gains contribute to the rising
computation demand.
→ net increase of the total power consumption.

• Rebound effects for data-centers [Masanet, 2020]
→ 6% increase in energy consumption from 2010 to 2018

(255 % increase in nodes).

• Indirect rebound effects: computation advances can
contribute to the acceleration of other fields.
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AI energy and computation costs



Artificial Intelligence

• 2012: AI renaissance brought by increased data availability
and computation ressources

• breakthroughs in multiple domains
• many innovations : algorithms, specialized processors,
optimizations

• Most systems use neural networks :
• Training (stochastic gradient descent + backpropagation)
• Inference (forward pass)

• For both, the bottleneck is matrix multiplication
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Training cost doubles every 3.4 months [OpenAI, 2020]
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Should we study training or inference?

• Training: huge cost but done once
• GPT3, 175 billion parameters, ≈ 314 ZettaFLOP
• GPT4, 1.7 trillion parameters

• Inference: millions of users and requests
• 80-90% cost of a deployed AI system is spend on inference
[NVIDIA, 2019]
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Inference cost - Diminishing returns for computer vision

Exponential increase in compute for linear accuracy gain
[Desislavov, 2023 / Schwartz, 2019]
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More frugal computing?



Smaller precision / Smaller models for AI

LLM success of smaller models (Llama, Chinchilla) fine-tuned
for specific tasks with LoRA. 15



Tradeoff: Model complexity - Cost - Explainability

• Inference cost grows with model complexity

• Simpler models are often more interpretable
• Traditional science also prefers simpler models

• DNN not necessary for all tasks
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Two case-studies in HPC

• Computing slower: DVFS for LU decomposition in KNM
architectures

• Computing less precisely: mixed precision in YALES2 solver
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Measuring the energy?

• Wall watt-meters
• precisely measure the total consumption
• slow sampling resolution (≈ 1s)
• hard to use within a super-computer

• Manufacturers energy-counters (rapl,
nvml, ...)

• easy to access and high sampling rate
• do not capture the whole system
consumption

• use power estimate models
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RAPL vs. Yokogawa watt-meter
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DVFS study of LU decomposition
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• Knights Mill 72 cores
• Intel MKL dgetrf
• n ∈ [1000, 3000]
• RAPL estimation

Save energy by computing slower: 1GHz

Thomas Roglin, M1 CHPS internship 2023 20



When accounting for the whole system
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• Model : RAPL + 40W

• Optimal 2.6 GHz : compute faster and turn off machine
• Saves idle power (race to idle)

Thomas Roglin, M1 CHPS internship 2023
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Verificarlo

github.com/verificarlo/verificarlo

• Based on the LLVM compiler
• Active open source project with 15 contributors
• Backends: debugging (MCA, Cancellation) +
mixed-precision (Vprec)

• MCA overhead from ×6 (binary32) to ×160 (binary64).

Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic.
Denis, de Oliveira Castro, Petit. IEEE Symp. on Computer Arithmetic 2016 22

github.com/verificarlo/verificarlo


VPREC for mixed precision

• Estimate numerical effect of bfloat16, tensorflow32, fp24
on standard IEEE-754 hardware (before paying the porting
cost)

• VPREC emulates any range and precision fitting in original
type

• Uses native types for storage and intermediate
computations

• Handle overflows, underflows, denormals, NaN, ±∞
• Rounding to nearest (faithful)
• Fast: × 2.6 to × 16.8 overhead

r tbinary16

s exponent pseudo-mantissa
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YALES2 application

• Computational Fluid Dynamics solver from Coria-CNRS

• Deflated Preconditioned Conjugate
Gradient

• CG iterations alternate between a:
• Deflated coarse grid
• Fine grid

VPREC: Find minimal precision over
iterations that preserves convergence
(dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative
methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019
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Mixed-precision on Yales2
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Minimal precision that preserves convergence.

Energy 16% gain on the deflated part
Communication 28% gain on communication volume
Time 10% speedup on CRIANN cluster (560 nodes)
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Need for an interdisciplinary discussion

• AI / HPC can contribute towards sustainability (eg.
acceleration of weather forecast models)
... but its energy cost must be reduced

• Efficiency:
• Improve hardware and software
• Use smaller models / smaller precision

... subject to rebound effects

• Frugality in computing:
• Balance computation cost vs. outcomes for each task
• Choose the right sized model
• Assess the environmental impact
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Exemple: e-health solution in Tanzania [d’Acremont, 2021]

Treatment of febrile children illnesess in dispensaries.

• IMCI: Paper-based decision tree WHO
• e-POCT CART tree tailored to real data on a standalone
tablet

• Final CART tree easy to interpret and manually checked
• Randomized-trial → better clinical outcomes and
antibiotic prescription reduction

• Sophisticated AI that continuously collects patient data
and adapts the algorithm ?

• Increase in hardware and computation costs.
• Loss in explainability and verification of the algorithm.

D’Acremont presentation: https://youtu.be/oKcy_cY0QOw
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