
Computer Science Introductory Course MSc - Introduction to Java

Computer Science Introductory Course MSc -
Introduction to Java
Lecture 1: Diving into java

Pablo Oliveira <pablo@sifflez.org>

ENST

Computer Science Introductory Course MSc - Introduction to Java

Outline

1 Introduction

2 Primitive types

3 Operators

4 Basic OOP

5 Control Flow

Computer Science Introductory Course MSc - Introduction to Java

Introduction

Introduction : Execution model

Java programs run inside a Virtual Machine (JVM), ”a software
implementation” of a computer (making Java programs portable
among different architectures).

For the sake of performance and space, the JVM reads bytecode (a
low level language).

It is easier for humans to write programs in a more expressive, high
level language, like Java.

The Java compiler is an automatic translator from Java to Bytecode.

Computer Science Introductory Course MSc - Introduction to Java

Introduction

Introduction : Concepts

A computer program can be seen as a transformation from a state of
a computer to a new one.

So very informally, programming is a matter of transforming data :

Find a computer representation of data
Write methods to transform this data

In this lecture we will learn about :

primitive types : Basic representations of data.

operators : Simple operations on data.

objects : Combine data representation and methods to transform
data.

control flow : Control which operations are done and how many times.

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Outline

1 Introduction

2 Primitive types

3 Operators

4 Basic OOP

5 Control Flow

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Representing data

Data is encoded in memory as a binary string.

b in : 00000000 01001000 00000000 01101001
dec : 0 72 0 105

What does this value represent ?

Example

2d line : (0,72) to (0,105)

integer : 4718697

float : 6.612303E-39 (IEEE 754)

string : ’H’ ’i’

...

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Variables and Types

To lift this ambiguity we introduce types, which specify how a value
should be used.

We also give each value a name (should start with {letter, $, } and
contain only {alphanumeric, $, }).

We call the association (name, type, value) a variable.

Example

boolean is it raining = true; 1 bit logic value
byte life expectancy = 70; 8 bit range [−128..127]
short year ; 16 bit defined on [−215..215 − 1]
char unicode character = ’A’; UTF-16 caracter
int city population = 2167994; 32 bit range [−231..231 − 1]
long molecules ; 64 bit range [−263..263 − 1]
float mean grade = 13.54; single precision(ex. 8 mt. 23)
double angular speed; double precision(ex. 11 mt. 52)

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Mutable variables, assignment, final variables

The value of a variable can be modified during the execution of a
program, except for final variables (which can only be assigned once).

i n t a ; // va r i ab l e d e c l a r a t i on
f l o a t b = 3 ; /∗ va r i ab l e d e c l a r a t i on with

i n i t i a l ass ignment ∗/
f i n a l f l o a t p i ;
p i = 3 . 14159 ;

a = 8 ; // ass ignment
b = 1 ; // ass ignment
p i = 0 ; // i l l e g a l (won ’ t compi le)

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Arrays

Arrays model a contiguous, random access, fixed-length, collection of
values. The values of an array are of the same type.

// The type o f the array p r i c e i s f l o a t []
f l o a t [] p r i c e ;

// r e s e r v e memory f o r 3 e lements
p r i c e = new f l o a t [3] ;

// i n i t i a l i z e the va lue s o f the e lements
p r i c e [0] = 1 . 0 0 ;
p r i c e [1] = 5 . 9 9 ;
p r i c e [2] = 3 . 2 5 ;

// Syntax sugar f o r t h i s i s :
f l o a t [] p r i c e = {1 .00 , 5 . 99 , 3 . 2 5} ;

Computer Science Introductory Course MSc - Introduction to Java

Primitive types

Strings

Strings represent a collection of characters.

S t r i n g message = ”He l l o World ” ;

Caution

Strings and arrays are a mix between objects and primitive types and
thus some care must be taken when manipulating them.

In the next lecture we will explain why when we’ll talk about
references and immutability.

Computer Science Introductory Course MSc - Introduction to Java

Operators

Outline

1 Introduction

2 Primitive types

3 Operators

4 Basic OOP

5 Control Flow

Computer Science Introductory Course MSc - Introduction to Java

Operators

Simple Operators

Operators are special symbols which perform an operation on some
operands.

The semantic of the operator depends on the type of the operands.

Example

a = 5; b[4] = 30 assignment
5 + 4 → 9 sum
5 − 4 → 1 substraction
”hello ” + ”world”→ ”hello world” concatenation
4 ∗ 4 → 16 multiplication
15 / 2 → 7, 15.0 / 2 → 7.5 integer or float division
15 % 2 → 1 modulo
15 > 12 → true bigger than
< >= <= other comparison operators

Computer Science Introductory Course MSc - Introduction to Java

Operators

Increment operators

Increment (++), decrement (−−) operators :

i n t a , b , c ;

a = 42 ;
b = a++;
\\ he r e b e v a l u a t e s to 42 and a to 43

a = 42 ;
b = ++a ;
\\ he r e b e v a l u a t e s to 43 and a to 43

with ++a the value of a is incremented, then the right side of the
assignment is evaluated.

with a++ the right side of the assignment is evaluated, then a is
incremented.

Computer Science Introductory Course MSc - Introduction to Java

Operators

More Operators

Operation + assignment (+= −= ∗= /= etc ...)

a += b ; // equ iva l en t to :
a = a + b ;

Equality == and Inequality !=

i n t a , b ;
a = 5 ;
c = 2 ;
b = c + 3 ;
a == b ; // −−> t rue
a != c ; // −−> t rue

Referential equality when used with objects, strings and arrays (we’ll
come back to this later)

Computer Science Introductory Course MSc - Introduction to Java

Operators

Boolean operators

Boolean Operators

boo l a = f a l s e ;
boo l b = t rue ;

/∗ not ∗/ ! a // −−> t rue
/∗ and ∗/ a && b // −−> f a l s e
/∗ or ∗/ a | | b // −−> t rue

/∗ Care fu l : Lazy ∗/
i n t a = 0 ;
(f a l s e) && (a++ > 0) // a eva lua t e s to 0
(t rue) | | (a++ > 0) // a eva lua t e s to 0

Computer Science Introductory Course MSc - Introduction to Java

Operators

Other operators

Ternary Operator (condition?true stm: false stm) ex : (a>b) ? a : b

Bitwise Operators (>> << >>> & |)
instanceof

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Outline

1 Introduction

2 Primitive types

3 Operators

4 Basic OOP

5 Control Flow

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Objects

Definition

An object is the association of :

a State (i.e. data)

some Methods (i.e. operations that change/read state)

Example

A turtle has a state composed of its color, its position and its orientation,
and some methods : turn, advance and readPosition.

x

y

1 2 3

1

2

3
(2,3)

30°

Turtle

color: green
position: (2, 3)
rotation: 30.0°

turn(double angle)
advance()
readPosition()

{
{

State

Methods

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Classes

Definition

A class is a blueprint for making objects. A class defines the common
attributes of a family of objects :

the methods they share

the types of variables they have

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Classes

Example

Turtle 1

color: red
position: (0, 0)
rotation: 90.0°

turn(double angle)
advance()
readPosition()

Turtle 2

color: blue
position: (10, -5)
rotation: 35.4°

turn(double angle)
advance()
readPosition()

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Classes

Example

Turtle 1

red
(0, 0)
90.0°

Turtle 2

blue
'10, -5)
35,4°

Class Turtle

color: a color
position: coordinates
rotation: an angle

turn(double angle)
advance()
readPosition()

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Anatomy of a method

static float norm (float x, float y) {
 return x*x + y*y ;
}

method modifiers

parameters (i.e. input)return type (i.e. output)
name

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

In Java

c l a s s Tu r t l e {
Co lo r c o l o r ;
P o s i t i o n p o s i t i o n ;
double r o t a t i o n ;

vo id t u rn (double ang l e) { r o t a t i o n += ang l e ; }
vo id advance () {

i n t s t e p s i z e = 5 ;
p o s i t i o n . x += s t e p s i z e ∗ cos (r o t a t i o n ∗Math . PI /180) ;
p o s i t i o n . y += s t e p s i z e ∗ s i n (r o t a t i o n ∗Math . PI /180) ;

}

Po s i t i o n r e a dPo s i t i o n () {
r e t u r n p o s i t i o n ;

}
}

Tu r t l e t u r t l e 1 = new Tu r t l e () ;
Tu r t l e t u r t l e 2 = new Tu r t l e () ;

P o s i t i o n pos = t u r t l e 1 . r e a dPo s i t i o n () ;
t u r t l e 2 . t u rn (2 0) ; t u r t l e 2 . advance () ;

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Instance Methods/Variables

Objects turtle1 and turtle2 are called instances of class Turtle,

turtle2 . color represents the color for the specific instance turtle2 :
→ color is an instance variable

turtle1 . readPosition () returns the position of the specific instance
turtle1 :
→ readPosition() is an instance method

Definition

An instance method or instance variable is only relevant in the context of
a particular object.

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Static Methods/Variables

Q : how to share a common variable between all the objects in a class ?

c l a s s Tu r t l e {
s t a t i c i n t s t e p s i z e = 5 ;

}

Q : how to write a method independent from a particular instance ?

c l a s s Tu r t l e {
s t a t i c double degreesToRad ians (double deg) {

r e t u r n deg ∗ Math . PI /180 ;
}

}

Tu r t l e . deg reesToRad ians (3 0) ; −> 1.0471975512

Definition

A static variable is shared among all the objects of a class. A static
method is called in the context of a class and not for a specific object.
Static variables are also called class variables.

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Local Variables / Scope

Definition

Variables defined inside a method are called local variables.
The scope of a variable is the portion of code where it is visible (ie. where
you can read it, or modify it).

Local variables are only visible inside their method.
Instance and Static variables are visible in all the methods from their
class.

In the next lecture we will talk about the visibility of methods, and about
access modifiers that regulate the visibility of methods/variables outside
their class.

Computer Science Introductory Course MSc - Introduction to Java

Basic OOP

Main : the program entry point

Q : (At last ...) How do we start things up ?

c l a s s MyFirstJavaProgram {
p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {

System . out . p r i n t l n (”He l l o wor ld ! ”) ;
}

}

(Note : public means this method can be called from anywhere, this is a
prerequisite for the main method)

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

Outline

1 Introduction

2 Primitive types

3 Operators

4 Basic OOP

5 Control Flow

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

If - else

Depending on a predicate choose which branch to execute

i f (p r e d i c a t e) b l ock1 e l s e b lock2

s t a t i c i n t c o l l a t z (i n t n) {
i f (n % 2 == 0) {

r e t u r n n /2 ;
} e l s e {

r e t u r n 3∗n + 1 ;
}

}

code between {} is called a block, variables defined inside a block are not
visible outside

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

while

Execute a block repeatedly while a predicate is true

whi le (p r e d i c a t e)
b l o ck ;

s t a t i c i n t gcd (i n t a , i n t b) {
whi le (b != 0) {

i n t t = b ;
b = a % b ;
a = t ;

}
r e t u r n a ;

}

Above if the predicate is false the block is never executed. When
appropriate, you can use instead do { ... } while (predicate); which
always executes the block at least once.

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

for

More sophisticated loop

f o r (s ta tement ; p r e d i c a t e ; s ta t ement)
b l o ck

f o r (i n t i = 0 ; i < 100 ; i++) {
System . out . p r i n t l n (i) ;

}

Syntax sugar for :

i n t i = 0 ;
whi le (i < 100) {

System . out . p r i n t l n (i) ;
i ++;

}

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

break and continue

Escaping from loops

break will exit the loop from which it is called

continue will jump to the next iteration of the loop from which it is
called

i n t whe r e I s (i n t e lement , i n t [] s e t) {
i n t i ;
f o r (i = 0 ; i < s e t . l e n g t h ; i++) {

i f (e l ement == s e t [i]) {
break ;

}
}
r e t u r n (i < s e t . l e n g t h) ? i : −1;

}

Computer Science Introductory Course MSc - Introduction to Java

Control Flow

You can also escape using return, which here avoids a test and is more
elegant.

i n t whe r e I s (i n t e lement , i n t [] s e t) {
f o r (i n t i = 0 ; i < s e t . l e n g t h ; i++) {

i f (e l ement == s e t [i]) {
r e t u r n i ;

}
}
r e t u r n −1;

}

We won’t discuss switch/case control structure. If interested you may
look it up !

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

	Introduction
	Primitive types
	Operators
	Basic OOP
	Control Flow

