
Computer Science Introductory Course MSC - Software engineering

Computer Science Introductory Course MSC -
Software engineering

Lecture 1: Software Management

Pablo Oliveira <pablo@sifflez.org>

ENST

13/10/2008

Computer Science Introductory Course MSC - Software engineering

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Introduction

Lessons from the past

1996 Ariane-5 self-destructs, unhandled floating point exception,
$500M lost.

1998 Mars Climate Orbiter is lost, navigation data expressed in
imperial units, $327.6M lost.

1988-1994 FAA Advanced Automation System, project is abandoned,
blame on management and over-ambitious specifications, $2.6B lost.

1985-1987 Therac-25 medical accelerator, a radiation therapy device
malfunctions because of a race condition, 5 patients die, others are
injured.

Computer Science Introductory Course MSC - Software engineering

Introduction

Common problems

Amount of work is underestimated.

Project specifications are vague.

Lack of communication :

‘Communication overheads increase as the number of people increase
(Brooks)

Issues are not properly tracked.

Teams botch the testing phase because of pressure from
management.

Computer Science Introductory Course MSC - Software engineering

Software life-cycle

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Software life-cycle

Time distribution in a software project ?

(source :

Nancy Leveson)

Computer Science Introductory Course MSC - Software engineering

Software life-cycle

Planning

Plan time carefully : “adding manpower to a late software project
makes it later” (Brooks).

You only control what you can measure : use metrics.

Model dependencies and deadline, analyse risk.

Keep track of deadlines and critical tasks, Gantt chart.

Computer Science Introductory Course MSC - Software engineering

Software life-cycle

The phases of software development

Analysis (Requirements capture and specification)

Design

Implementation

Integration

Testing

Deployment

Maintenance

Computer Science Introductory Course MSC - Software engineering

Software life-cycle

Keeping track : Document !

Each software phase should be documented : each component life should
be traceable

Requirements −→ use-cases, requirements formal document.

Specifications −→ specifications formal document.

Code −→ Comments / Revision Control System.

Bugs −→ Issues tracker / Regressions tests.

User Documentation.

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Requirements capture

Objective : Understand the problem, so you can build the system the
client needs instead of the system he thinks he needs.

Hard because :

the client may have strong preconceptions about the system.
the client may be vague abouts its needs.

Requirements specify : ’What’ a system does and not ’How’ it
should be done.

Requirements should be expressed in a language understandable by
the client.

Requirements should be traceable.

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Requirements analysis

Interviewing

Lots of work
Not necessarily precise

User stories

Clients write down user stories
Use cases
Each user story has acceptance tests

Straw-men

Sketch the product
Use anything ; napkins, storyboards, HTML, flowcharts
Anything to convey ideas without writing code !

Rapid prototyping

Create one for client to validate
Major functionality, superficially implemented

(Source : Irfan Hamid)

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Functional Requirements

The functions of a system : what should a system do ?

mapping from input to output

control sequencing

timing of functions

handling of exceptional situations

formats of input and output data

real world entities and relationships modeled by the system

...

(Source : Steve Easterbrook, University of Toronto)

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Non-Functional Requirements

Constraints and quality goals

interoperability

portability

availability

safety

...

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Requirements specifications

At the end of the requirements gathering phase, the team must
produce a specification document.

The problem must be explained.

Functional and Non-Functional requirements must be stated, and
numbered.

Some exemplary use cases that illustrate the product’s functions
should be given.

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Requirements must be testable

An untestable requirement

The system shall be easy to use by experienced controllers and shall be
organized in such a way that user errors are minimized.

A testable requirement

Experienced controllers shall be able to use all the system functions after
a total of two hours training. After this training, the average number of
errors made by experienced users shall not exceed two per day.

(Source : Nancy Leveson)

Computer Science Introductory Course MSC - Software engineering

Requirements capture

Example of requirements specifications

3.3.4 Intute Repository Search response data

3.3.4.1 Description The web service must provide responses to name
query requests with a list of possible matches including the name
authority record identifier (URI). The service may also need to return
all other forms of an entity’s name and affiliations for further
disambiguation.
3.3.4.2 Related requirements 3.3.1, 3.2, 3.2.1, 3.2.2.
3.3.4.3 Source Introduced in Stakeholders’ Requirements for the
Names project prototype Intute Repository Search, Page 7.

(Source : Software Requirements Specification for the Names project prototype

by Daniel Needham, Amanda Hill, Alan Danskin & Stephen Andrews)

Computer Science Introductory Course MSC - Software engineering

Software Specifications

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Software Specifications

Specification

An abstract description of the software that serves as a basis for (or
describes) detailed design and implementation

Describes how the requirements will be achieved.

Primary readers will be software designers and implementers rather
than users or management.

Goals and constraints specified in requirements document should be
traceable to the design specification (and from there to the code.

(Source : Nancy Leveson)

Computer Science Introductory Course MSC - Software engineering

Software Specifications

Views of Specifications

Developer

Must be detailed enough to aid implementation
Must not be ambiguous
Must be traceable

Client

Must be comprehensible
Must be readable by non-computer specialists

Legal

A binding document.
Must contain acceptance (testable) criteria.

(Source : Adapted from Irfan Hamid course 2005)

Computer Science Introductory Course MSC - Software engineering

Software Specifications

Format of Specifications

Natural language (must be as unambiguous as possible)

Semi-formal specifications (UML)

Formal specifications (DFA, Z language, B language, math ...)

Computer Science Introductory Course MSC - Software engineering

Software Specifications

Example of specification using : Pre-conditions,
Post-conditions, Invariants

class Dictionnary
put (x: ELEMENT; key: STRING)

require (pre-condition)
count <= capacity
not key.empty

ensure (post-condition)
has (x)
item (key) = x
count = old count + 1

invariant
0 <= count
count <= capacity

Computer Science Introductory Course MSC - Software engineering

Software development models

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Software development models

Waterfall (1/2)

(source : Paul Hoadley)

Computer Science Introductory Course MSC - Software engineering

Software development models

Waterfall (2/2) : pros & cons

Pros

Disciplined approach.

Big Design Up Front.

Document driven.

Cons

Does not adapt to change :

Changing requirements.
Problems discovered during the implementation phase.

Computer Science Introductory Course MSC - Software engineering

Software development models

V Model (1/2)

Computer Science Introductory Course MSC - Software engineering

Software development models

V Model (2/2)

Extension of the waterfall model :

Takes in account the V&V and defines acceptance tests for each step.

Better correspondence between design & tests.

Makes V&V a central part of the process.

Computer Science Introductory Course MSC - Software engineering

Software development models

Evolutionnary

Plan to throw one away

Pros

Test feasibility.

Check requirements.

Discover problems early.

Get user feedback early.

Cons

Prototype gets a life of its own.

Less though out designs.

Less robustness.

Computer Science Introductory Course MSC - Software engineering

Software development models

Iterative (1/2)

Computer Science Introductory Course MSC - Software engineering

Software development models

Iterative (2/2) : pros & cons

Pros

Adapts well to change.

Learning from the errors in the previous steps.

Each step produces a finished product.

Cons

Hard to recover from bad design choices in early steps.

Computer Science Introductory Course MSC - Software engineering

Software development models

Spiral(1/2)

(source : Conrad Nutschan)

Computer Science Introductory Course MSC - Software engineering

Software development models

Spiral(2/2) : pros & cons

Pros

A form of iterative development.

Tries to combines all the previous models.

Risk based.

Cons

Very costly for small projects.

Computer Science Introductory Course MSC - Software engineering

Software development models

Agile ?

A buzzword that describes an emerging practice of software
development.

Encourages adaptation, inspection, communication, customer
involvement, time-boxed development steps.

Still very new, it is hard to evaluate the benefits from agile
methods :

pair programming.
stand-up meetings.
time-boxed development steps.

Yet it seems mainly effective with small teams of experienced
developers.

Computer Science Introductory Course MSC - Software engineering

Software development models

Which is best ?

SE is a young discipline, we lack perspective and objective studies to
validate its methods.

Depends on the project, the team size and competences, the
enterprise culture.

Act of faith.

Choose something that works for you, but try to be rigorous and
keep track of things.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

Outline

1 Introduction

2 Software life-cycle

3 Requirements capture

4 Software Specifications

5 Software development models

6 Software development tools.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

Software development tools

Tools will never replace team communication.

Tools will never replace well though design.

BUT...

Tools can help in keeping track of code, bugs and issues.

If used wisely, they can ease project documentation, management
and communication.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

Testing frameworks

JUnit, ...

Eases writing of unit, functional and regression tests.

Allow automatic execution of the tests.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

Version control system

SVN(centralized), GIT(distributed), ...

Keep track of changes in code.

Each change is tagged with a commit message that explains which
problem the code is going to solve.

Developers have the complete history of a line code at their
fingertips.

When coupled with regression testings, can help finding the exact
change that introduced a bug.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

Issues tracker

Roundup, Trac, etc ...

Keep track of issues in a project.

Allow easy bug reporting from users.

Each issue is assigned a ticket which traces :

the discussion surrounding the issue.
the state of the issue.
the proposed patches to solve the issue.
the code commit that solves the issue.

Computer Science Introductory Course MSC - Software engineering

Software development tools.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

	Introduction
	Software life-cycle
	Requirements capture
	Software Specifications
	Software development models
	Software development tools.

