
Computer Science Introductory Course MSC - Software engineering

Computer Science Introductory Course MSC -
Software engineering

Lecture 5: Testing

Pablo Oliveira <pablo@sifflez.org>

ENST



Computer Science Introductory Course MSC - Software engineering

Outline

1 Introduction

2 What to test ?

3 Types of tests

4 Automated testing



Computer Science Introductory Course MSC - Software engineering

Introduction

Introduction

Verification and Validation :

Validation ensures that the software fulfills the requirements.
Verification ensures that the software meets the specification, three
approaches :

Prove correctness by formal verification : costly, do not prevent from
bugs in the specification.
Code inspection by peer reviews.
Testing.



Computer Science Introductory Course MSC - Software engineering

What to test ?

What to test ?

Running the program on all possible inputs is impossible for complex
problems :

exploration space might be insanely large (or worse infinite)

Test on a subset of inputs :

Partition inputs in significant classes maximizing the coverage of all
the possible cases.
To do this choose particular inputs for your tests :

inputs that tests all the control branches of your code
boundary cases (detect overflow and off by one bugs)
duplicate, null or invalid inputs.



Computer Science Introductory Course MSC - Software engineering

What to test ?

Example of partitionning (1/2)

specification:
int compare (int a, int b);

The function compare returns:
0 if a is equal than b
1 if a is strictly superior to b
-1 if a is strictly inferior to b

Q : What inputs would you test ?



Computer Science Introductory Course MSC - Software engineering

What to test ?

Example of partitionning (2/2)

int compare (int a, int b) {
int c = a-b;
if (c == 0) return 0;
else if (c<0) return -1;
else return 1;

}

System.out.println(compare(10,10)); -> 0
System.out.println(compare(10,5)); -> 1
System.out.println(compare(-10,-5)); -> -1
System.out.println(compare(-2147483648,1)); -> 1



Computer Science Introductory Course MSC - Software engineering

What to test ?

Example of partitionning (2/2)

int compare (int a, int b) {
int c = a-b;
if (c == 0) return 0;
else if (c<0) return -1;
else return 1;

}

System.out.println(compare(10,10)); -> 0
System.out.println(compare(10,5)); -> 1
System.out.println(compare(-10,-5)); -> -1
System.out.println(compare(-2147483648,1)); -> 1



Computer Science Introductory Course MSC - Software engineering

Types of tests

Black box and White box testing

Black box testing

Generate test cases from the specification only.

Do not make the same assumptions than the programmer.

Tests are independent of the implementation.

White box testing

Generate test cases from the source code.

Improves coverage : we know the different control paths in the code.



Computer Science Introductory Course MSC - Software engineering

Types of tests

Unit tests

A unit is the smallest testable part of an application.

Test a single functionality in the code.

Usually tests a single method.

Unit tests allow to isolate the parts of the system and show they are
correct.

Most useful during the implemenation phase.



Computer Science Introductory Course MSC - Software engineering

Types of tests

Functional tests

Functional tests verify the program as a whole.

Centered in functionality which may be distributed among many
classes and functions.

Important during the integration phase.



Computer Science Introductory Course MSC - Software engineering

Types of tests

Regressions tests

Each time a bug is detected, a test that catches it must be written.

If later on code is changed, the test ensures that if the bug appears
again, it will be catched.



Computer Science Introductory Course MSC - Software engineering

Automated testing

JUnit

Allows automazing tests.

Helps during regression testing.

http://www.junit.org/



Computer Science Introductory Course MSC - Software engineering

Automated testing

Example(1/2)

import junit.framework.*;

public class TestCompare extends TestCase {
CompareClass comp;
protected void setUp() {
comp = new CompareClass();

}
public void testPositive() {
int compare = CompareClass.compare(10,5);
assertEquals(compare, 1);

}
public void testBoundaries() {
int compare = CompareClass.compare(-2147483648,1);
assertEquals(compare, -1);

}
}



Computer Science Introductory Course MSC - Software engineering

Automated testing

Example(2/2)

$ javac -cp junit-4.5.jar:. TestCompare.java

$ java -cp junit-4.5.jar:. junit.textui.TestRunner TestCompare

..F

Time: 0,003

There was 1 failure:

1) testBoundaries(TestIt)junit.framework.AssertionFailedError: expected:<1> but was:<-1>

at TestCOmpare.testBoundaries(TestIt.java:11)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

FAILURES!!!

Tests run: 2, Failures: 1, Errors: 0



Computer Science Introductory Course MSC - Software engineering

Automated testing

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.


	Introduction
	What to test ?
	Types of tests
	Automated testing

