ASK: Adaptive Sampling Kit

P. de Oliveira Castro, E. Petit, JC. Beyler, W. Jalby

Université de Versailles St-Quentin-en-Yvelines

Exascale Computing Research

2012/08/29

Outline

2 Adaptive Sampling Kit

Hierarchical Variance Sampling

Motivation: Building Performance Models

- Building performance models is important to
 - Understand performance bottlenecks
 - Optimize applications
 - Find best architecture for a given application (co-design)

Motivation: Building Performance Models

• How to model performance ?

- Using simulators or analytical models
 - Architectures are complex and many factors interact (memory hierarchy, amount of parallelism, mapping, access patterns)
 - ★ Often models are too complex or costly
- Black-box approach:
 - Measure performance for different hardware or software configurations (the design space)
 - ★ Build an empirical model

Design Space example: Jacobi Stencil code

- T, number of OpenMP Threads, between 1 and 32
- N and M between 64 and 2048

• X,
$$Y \in \{1, 2, 4, 8, 16\}$$

- Design space size around 31.10⁸
- What is the performance for any combination of factors ?

Building empirical models

- Exhaustively measuring large design spaces is prohibitive.
- Build an accurate performance model with as few samples as possible
- Sampling method to select which points to measure
 - Samples must be chosen with care or the model will be biased.
- Regression model to estimate the missing samples
 - Linear, polynomial, SVM, Gaussian Process, Regression Trees, etc.
- No one size fits all strategy:
 - Depending on the design space response some models and sampling methods will work better than others
 - Important to try different strategies

- The contributions of this work are:
 - ASK open-source toolkit to build empirical models
 - ★ Easy to try different sampling strategies
 - A novel sampling strategy HVS
 - * Evaluated on different performance characterization problems

ASK: Adaptive Sampling Kit

- Adaptive Sampling Kit (ASK) is a toolkit for building empirical models
- Modular architecture for conducting experiments:
 - Easy to combine different sampling strategies and models
 - Gathers state-of-the art sampling methods
 - Provides visualization modules to supervise the sampling
 - Provides control modules to stop the sampling when its accurate enough

Sampling methods included in ASK

- Sampling methods fall in two main categories
- Static methods: Space Filling Designs
 - Select a set of samples covering the design space
 - All points are measured in a single batch
 - ★ Latin Hyper Cube
 - ★ Maximin
 - ★ Low discrepancy
 - ★ Random
- Adaptive methods:
 - Sampling iteratively adapts to the design space complexity
 - * AMART [Li09]: a Query-By-Comittee method
 - ★ TGP + ALC [Gramacy09]: an Error-reduction method
 - HVS: a novel Error-reduction method that takes into account bias

Latin Hyper Cube

Adaptive Sampling

- Divide the space in regions using Regression Trees
- Compute the variance in each region
- \bullet Sample new points proportionally to: Variance upper bound \times size of the region

P. Oliveira et al (UVSQ/ECR)

P. Oliveira et al (UVSQ/ECR)

factor

factor

ASK: Stencil code evaluation

 Despite using only 1500 points, HVS+GBM captures the performance features of the application.

- (25600 samples used as original response test set)
- 32 cores Xeon X7550 2.00GHz

ASK: Evaluating estimation error

Figure: Stencils, Root Mean Square Error for different ASK sampling strategies

Using the Model for prediction

Figure: Scalability of the 8x8 stencil on a 1000x1000 matrix

Importance of selecting a good model

- Influence of alignment stream benchmark
 - Three store streams hitting memory
 - Memory offsets: S(k), S(V1 + k), S(V2 + k)
 - 4K aliasing
 - non aligned access overhead

Alternatives to ASK

- SUrrogate MOdeling Lab (SUMO) [Gorissen2010]
 - Mature toolbox
 - Includes many models and sampling methods
 - Automatic tuning of model parameters
 - Supports modeling of multiple responses
 - ASK specifically targets performance characterization
 - ★ AMART [Li09] and HVS methods have been evaluated on performance problems
 - Only supports real-valued inputs
 - Depends on Matlab and is not open-source (but freely available for academic use)
- Caret R package [Kuhn2012]
 - Includes many models
 - Automatic tuning of model parameters
 - Does not handle sampling

- ASK is open-source and available at
 - http://code.google.com/p/adaptive-sampling-kit/

- The experimental data used in the paper is available at
 - http://code.google.com/p/adaptive-sampling-kit/wiki/ ExperimentalData