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Abstract. Characterizing performance is essential to optimize programs
and architectures. The open source Adaptive Sampling Kit (ASK) mea-
sures the performance trade-offs in large design spaces. Exhaustively
sampling all points is computationally intractable. Therefore, ASK con-
centrates exploration in the most irregular regions of the design space
through multiple adaptive sampling methods. The paper presents the
ASK architecture and a set of adaptive sampling strategies, including a
new approach: Hierarchical Variance Sampling. ASK’s usage is demon-
strated on two performance characterization problems: memory stride
accesses and stencil codes. ASK builds precise models of performance
with a small number of measures. It considerably reduces the cost of
performance exploration. For instance, the stencil code design space,
which has more than 31.108 points, is accurately predicted using only
1 500 points.

1 Introduction

Understanding architecture behavior is crucial to fine tune applications and de-
velop more efficient hardware. An accurate performance model captures all inter-
actions among the system’s elements such as: multiple cores with an out-of-order
dispatch or complex memory hierarchies. Building analytical models is increas-
ingly difficult with the complexity growth of current architectures.

An alternative approach considers the architecture as a black box and em-
pirically measures its performance response. The Adaptive Sampling Kit (ASK)
gathers many state of the art sampling methods in a common framework sim-
plifying the process. From the samples, engineers build a surrogate performance
model to study, predict, and improve architecture and application performance
on the design space. The downside of the approach is the exploration time needed
to sample the design space. As the number of factors considered grows – cache
levels, problem size, number of threads, thread mappings, and access patterns –
the size of the design space explodes and exhaustively sampling each combination
of factors becomes unfeasible.



To mitigate the problem, the engineer must sample only a limited number of
combinations. Moreover, they should be chosen with care: clustering the sampled
points in a small portion of the design space biases the performance model. The
two fundamental elements of a sampling pipeline are the sampling method and
surrogate model.

1. The sampling method decides what combinations of the design space should
be explored.

2. The surrogate model extrapolates from the sampled combinations a predic-
tion on the full design space.

Choosing an adequate sampling strategy is not simple: for best results one
must carefully consider the interaction between the sampling method and sur-
rogate model [1]. Many implementations of sampling methods are available, but
they all use different configurations and interfaces. Therefore, building and re-
fining sampling strategies is difficult. ASK addresses this problem by gather-
ing many state of the art sampling strategies in a common framework. De-
signed around a modular architecture, ASK facilitates building complex sam-
pling pipelines. ASK also provides reporting and model validation modules to
assess the quality of the sampling and find the best experimental setup for per-
formance characterization. The paper’s main contributions are:

– ASK, a common toolbox gathering state of the art sampling strategies and
simple to integrate with existing measurement tools

– A new sampling strategy, Hierarchical Variance Sampling (HVS), which mit-
igates sampling bias by using confidence bounds

– An evaluation of the framework, and of HVS, on two representative perfor-
mance characterization experiments

Section 2 discusses related works. Section 3 explains the HVS strategy. Sec-
tion 4 succinctly presents ASK’s architecture and usage. Finally, Section 5 eval-
uates ASK on two performance studies: memory stride accesses and 2D stencils.

2 Related Works

There are two kinds of sampling strategies: space filling designs and adaptive
sampling. Space filling designs select a fixed number of samples with sensible
statistical properties such as uniformly covering the space or avoiding clusters.
For instance, Latin Hyper Cube designs [2] are built by dividing each dimension
into equal sized intervals. Points are selected so the projection of the design on
any dimension contains exactly one sample per interval. Maximin designs [3]
maximize the minimum distance between any pair of samples; therefore spread-
ing the samples over the entire experimental space. Finally, low discrepancy
sequences [4] choose samples with low discrepancy: given an arbitrary region of
the design space, the number of samples inside the region is close to propor-
tional to its measure. By construction, the sequences uniformly distribute points



in space. Space filling designs choose all points in one single draw before starting
the experiment.

Adaptive sampling methods, on the contrary, iteratively adjust the sampling
grid to the complexity of the design space. By observing already measured sam-
ples, they identify the most irregular regions of the design space. Further samples
are drawn in priority from the irregular regions, which are harder to explore.

The definition of irregular regions changes depending on the sampling method.
Variance-reduction methods prioritize exploration of regions with high variance.
The rationale is irregular regions are more complex, thereby requiring more mea-
sures. Query-by-Committee methods build a committee of models trained with
different parameters and compare the committee’s predictions on all the can-
didate samples. Selected samples are the ones where the committee’s models
disagree the most. Adaptive Multiple Additive Regression Trees (AMART) [5]
is a recent Query-by-Committee approach based on Generalized Boosted Mod-
els (GBM) [6], it selects non-clustered samples with maximal disagreement. An-
other recent approach by Gramacy et al. [7] combines the Tree Gaussian Process
(TGP) [8] model with adaptive sampling methods [9]. For an extensive review
of adaptive sampling methods please refer to Settles [10].

The Surrogate Modeling Toolbox (SUMO) [11] offers a Matlab toolbox build-
ing surrogate models for computer experiments. SUMO’s execution flow is sim-
ilar to ASK’s: both allow configuring the model and sampling method to fully
automate an experiment plan. SUMO focuses mainly on building and control-
ling surrogate models, offering a large set of models. It contains algorithms for
optimizing model parameters, validating the models, and helping users choose a
model. On the other hand, most of SUMO’s adaptive methods are basic sequen-
tial sampling methods. Only a single recent approach is included, which finds
trade-offs between uniformly exploring the space and concentrating on nonlinear
regions of the space [12]. SUMO is open source but restricted to academic use
and depends on the proprietary Matlab toolbox.

ASK specifically targets adaptive sampling for performance characterization,
unlike SUMO. It includes recent state of the art approaches that were success-
fully applied to computer experiments [7] and performance characterization [5].
Simpson et al. [1] show one must consider different trade-offs when choosing a
sampling method: affinity with the surrogate model or studied response, accu-
racy, or cost of predicting new samples. Therefore, ASK comes with a large set
of approaches to cover different sampling scenarios including Latin Hyper Cube
designs, Maximin designs, Low discrepancy designs, AMART, and TGP. Addi-
tionally, ASK includes a new approach, Hierarchical Variance Sampling (HVS).

3 Hierarchical Variance Sampling

Many adaptive learning methods are susceptible to bias because the sampler
makes incorrect decisions based on an incomplete view of the design space. For
instance, the sampler may ignore a region despite the fact it contains big varia-
tions because previous samplings missed the variations.
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Fig. 1. HVS on a synthetic 1D benchmark after fifteen drawings of ten samples each.
The true response, f(x) = x5|sin(6.π.x)|, is the solid line. CART partitions the factor
dimension into intervals, represented by the boxes horizontal extension. For each inter-
val, the estimated standard deviation, s, is in a light color and the upper bound of the
standard deviation, σub, is dark. HVS selects more samples in the irregular regions.

To mitigate the problem, ASK includes the new Hierarchical Variance Sam-
pling. HVS’ principal concept is to reduce the bias using confidence intervals
that correct the variance estimation. HVS partitions the exploration space into
regions and measures the variance of each region. A statistical correction de-
pending on the number of samples is applied to obtain an upper bound of the
variance. Further samples are then selected proportionally to the upper bound
and size of each region. By using a confidence upper bound on the variance, the
sampler is less greedy in its exploration but is less likely to overlook interesting
regions. In others words, the sampler will not completely ignore a region until
the number of sampled points is enough to confidently decide the region has low
variance.

HVS is similar to Dasgupta et al. [13] proposing a hierarchical approach
for classification tasks using confidence bounds to reduce the sampling bias.
Nevertheless, the Dasgupta et al. approach is only applicable to classification
tasks with a binary or discrete response; whereas HVS deals with continuous
responses, which are more appropriate for performance characterization.

To divide the design space into regions, HVS uses the Classification and
Regression Trees (CART) partition algorithm [14] with the Analysis of Variance



(ANOVA) splitting criteria [15] and prunes the tree to optimize cross validation
error. At each step, the space is divided into two regions so the sum of the regions
variance is smaller than the variance of the whole space. The result of a CART
partitioning is shown in Figure 1 where each box depicts a region.

After partitioning, HVS samples the most problematic regions and ignores
the ones with low variance. The sampler only knows the empiric variance s2,
which depends on previous sampling decisions; to reduce bias HVS derives an
upper bound of the true variance σ2. Assuming a close to normal region’s dis-
tribution, HVS computes an upper bound of the true variance σ2 satisfying

σ2 < (n−1)s2

χ2
1−α/2,n−1

= σ2
ub with a 1 − α confidence4. To reduce the bias HVS uses

the corrected upper bound accounting for the number of samples drawn.
For each region, Figure 1 plots the estimated standard deviation s, light

colored, and upper-bound σub, dark colored. Samples are selected proportionally
to the variance upper bound multiplied by the size of the region, as shown in
Figure 1. New samples, marked as triangles, are chosen inside the largest boxes.
HVS selects few samples in the [0, 0.5] region, which has a flat profile.

If the goal of the sampling is to reduce the absolute error of the model, then
the HVS method is adequate because it concentrates on high-variance regions.
On the other hand, if the goal is to reduce the relative, or percentage, error
of the model it is better to concentrate on regions with high relative variance,
s2

x2 . HVSrelative is an alternate version of HVS using relative variance with
an appropriate confidence interval [16]. Section 5 evaluates the two sampling
strategies, HVS and HVSrelative, in two performance studies.

4 ASK Architecture

1.Bootstrap

Latin Hyper
Cube

Low Discrepancy

Maximin, . . .

3.Model

CART

GBM

TGP, . . .

4.Sampler

AMART

HVS

TGP, . . .

2.Source

2.Source

Reporter
Reports

progress and
predictive error

5.Control
Decides

when to stop
sampling

Fig. 2. ASK pipeline

ASK’s flexibility and extensibility come from its modular architecture. When
running an experiment, ASK follows the pipeline presented in Figure 2:

4 1− α = 0.9 confidence bound is default



1. A bootstrap module selects an initial batch of points. ASK provides standard
bootstrap modules for the space filling designs described in Section 2: Latin
Hyper Cube, Low Discrepancy, Maximin, and Random.

2. A source module, usually provided by the user, receives a list of requested
points. The source module computes the actual measures for the requested
factors and returns the response.

3. A model module builds a surrogate model for the experiment on the sam-
pled points. Currently ASK provides CART [14], GBM [6, 17], and TGP [7]
models.

4. A sampler module iteratively selects a new set of points to measure. Some
sampler modules are simple and do not depend on the surrogate model. For
instance, the random sampler selects a random combination of factors and
the latin sampler iteratively augments an initial Latin Hyper Cube design.
Other sampler modules are more complex and base their decisions on the
surrogate model.

5. A control module decides when the sampling process ends. ASK includes two
basic strategies: stopping when it has sampled a predefined amount of points
or stopping when the accuracy improvement stays under a given threshold
for a number of iterations.

From the user perspective, setting up an ASK experiment is a three-step
process. First, the range and type of each factor is described by writing an
experiment configuration file in the JavaScript Object Notation (JSON) format.
ASK accepts real, integer, or categorical factors. Then, users write a source
wrapper around their measuring setup. The interface is straightforward: the
wrapper receives a combination of factors to measure and returns their response.
Finally, users choose which bootstrap, model, sampler, control, and reporter
modules to execute. Module configuration is also done through the configuration
file. ASK provides fallback default values if parameters are omitted from the
configuration. An excerpt of a two factor configuration with the hierarchical
sampler module follows:

"factors": [{"name": "image-size",

"type": "integer",

"range": {"min": 0, "max": 600}},

{"name": "stencil-size",

"type": "categorical",

"values": ["small", "medium", "large"]}],

"modules": {"sampler": {"executable": "sampler/HVS",

"params": {"nsamples":50}}}

Editing the configuration file quickly replaces any part of the ASK experiment
pipeline with a different module. All the modules have clearly defined interfaces
and are organized with strong separation of concerns in mind. It allows the user
to quickly integrate custom made modules to the ASK pipeline. For example, by
replacing sampler/HVS with sampler/latin the user replays the same experi-
ence with the same parameters but using a Latin Hyper Cube sampler instead.



5 Experimental Study

Two performance characterization experiments were conducted using ASK to
achieve two different objectives. The first objective was to validate the ASK
pipeline and understand on a low dimension space the behavior of each method
using a synthetic microbenchmark called ai aik. Ai aik explores the impact of
stride accesses to a same array in a single iteration. The design space is com-
posed of 400 000 different combinations of two factors: loop trip N and k-stride.
The design space is large and variable enough to challenge sampling strategies.
Nonetheless, it is narrow enough to be measured exhaustively providing an exact
baseline to rate the effectiveness of the sampling strategies.

The second objective was to validate the strategies on a large experimental
space: 2D cross-shaped stencils of varying sizes on a parallel SMP. A wide range
of scientific applications use stencils: for instance, Jacobi computation [18, 19]
uses 2 × 2 stencils and high-order finite-difference calculations [20] use 6 × 6
stencils. The design space is composed of five parameters: the N ×M size of the
matrix, the X × Y size of the stencil, and T the number of concurrent threads
used. The design space size has more than 7.108 elements in a 8-core system and
more than 31.108 elements in a 32-core system.

Since an exhaustive measure is computationally unfeasible, the prediction
accuracy is evaluated by computing the error of each strategy on a test set
of 25 600 points independently measured. The test set contains 12 800 points
chosen randomly and 12 800 points distributed in a regular grid configuration
over the design space. Measuring the test set takes more than twelve hours of
computation on a 32-core Nehalem machine.

All studied sampling strategies use random seeds, which can slightly change
the predictive error achieved by different ASK runs. Therefore, the median error,
among nine different runs, is reported when comparing strategies.

Experiments ran with six of the sampling strategies included in ASK: AMART,
HVS, HVSrelative, Latin Hyper Cube, TGP, and Random. All the benchmarks
were compiled with ICC 12.0.0 version. The strategies were called with the fol-
lowing set of default parameters on both experiments:

Samples All the strategies sampled in batches of fifty points per iteration.
Bootstrapping All the strategies were bootstrapped with samples from the

same Latin Hyper Cube design, except Random, which was bootstrapped
with a batch of random points.

Surrogate Model The TGP strategy used tgpllm [8] model with its default pa-
rameters. The other strategies used GBM [6] with the following parameters:
ntrees=3 000, shrinkage=0.01, depth=8.

AMART ran with a committee size of twenty as recommended by Li et al. [5].
TGP used the Active Learning-Cohn [9] sampling strategy.
HVS, HVSrelative used a confidence bound of 1− α = 0.9.

Section 5.1 validates ASK on an exhaustive stride access experiment. Section 5.2
validates ASK on a large design space that cannot be explored exhaustively:
multi-core performance of cross-shaped stencils.



5.1 Stride Memory Effects
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Fig. 3. Stride experiments: (Left) exhaustive level plot shows the true response of the
studied kernel in cycles per element. AMART, HVS, and TGP respectively show the
predicted response of each strategy. Black dots indicate the position of the sampled
points. (Right) RMSE is plotted for each strategy and number of samples. The median
among nine runs of each strategy was taken to remove random seed effects.

This section studies the stride memory accesses of the following ai aik kernel:

for(i=0;i<N*256;i++) {

res[i]=a[i]+a[i+2*k];

}

The baseline is an exhaustive measure of cycle per element performance on a
Xeon L5609 quad-core 1.87GHz with 8GB of RAM. The measures revealed the
four zones on the left side of Figure 3:

1. In Zone 1 the kernel is fastest because both i and i+ 2.k accesses fit in L1.
2. Zone 2 is a transition zone between Zone 1 and Zone 3: under the diagonal,

the accessed elements still fit in L1.
3. In Zone 3 accesses do not fit fully in L1 anymore but the performance is still

acceptable because the accesses i + 2.k prefetch the data needed for the i
accesses in future iterations.

4. In Zone 4, performance is the worst because accesses do not fully fit in L1
and the 2.k distance is too wide for efficient software prefetching.

The preceding exhaustive analysis required 400 000 measures of the ai aik
kernel. ASK ran the same experiment with different sampling strategies stopping
at five hundred samples. Each method’s accuracy was determined by comparing
its predictions to the exhaustive baseline.

Comparing the predicted and exhaustive responses in Figure 3 shows that
TGP and HVS capture the four zones in detail while AMART is less precise in



Zone 2. The diagonal effect in Zone 2 introduces high variance. Therefore, HVS
concentrates its sampling, capturing the zone accurately.

The Root Mean Square Error (RMSE) is the standard metric in the literature
to evaluate a model’s accuracy. Figure 3, right side, shows the RMSE of each
method. The methods, except TGP, are comparable in terms of convergence
speed and reached accuracy. TGP scores a poor RMSE performance compared
to the other methods. GBM surrogate model seems to be a better fit for this
experiment.

In the experiment, ASK’s five hundred point sampling successfully captures
the performance features of the design space. ASK uses eight hundred times less
samples than the exhaustive analysis, while preserving accuracy.

5.2 Stencil Characterization

The stencil code characterization is unfeasible with exhaustive exploration,
but is possible using ASK’s adaptive sampling methods. In the studied stencil
code, Figure 4a, five factors are tunable – X and Y ∈ {1, 2, 4, 8, 16} the hori-
zontal and vertical sizes of the stencil, N ∈ [64, 2048] the number of lines of the
matrix, M ∈ [64, 2048] the number of columns of the matrix, and T ∈ [1, 32] the
number of threads. The stencil was studied on two Nehalem architectures: an
8-core dual-socket Xeon E5620 at 2.40GHz with 24GB of RAM and a 32-core
four-socket Xeon X7550 at 2.00GHz with 128GB of RAM. The OpenMP map-
ping policy was set to Scatter. The error was evaluated on an independent test
set of 25 600 points.

TGP was not used during the second experiment because it does not handle
categorical variables [8]. The computation time needed to select samples with
HVS, HVSrelative, and Latin is negligible compared to the time required to
measure a batch of samples. AMART is a Query-by-Committee strategy, which
generates a prediction on all the candidate points, for twenty different models. In
the stencil experiment the number of candidate points is in the order of billions,
computing a prediction on all of them is not possible. Therefore, as suggested by
Gramacy [8], ASK’s AMART implementation reduces the number of candidate
points to one thousand with a Latin Hyper Cube presampling.

The sampling strategies’ accuracy is measured in terms of RMSE and mean
relative error, in Figure 4b. Here only the 32-core results are examined because
the sampling strategies’ accuracy was similar for both the 8 and 32-core archi-
tectures. For RMSE, HVS outperforms all other strategies both in quality of
the final model, 1.76 RMSE, and speed of convergence. For mean percentage
error, AMART achieves the best final result, 8.89%, followed closely by Latin,
Random, and HVSrelative. HVSrelative converges faster than the others.

Overall, HVSrelative is the best compromise between RMSE and percentage
error because it achieves low final errors and converges quickly to an accurate
model. Using only eight hundred samples, HVSrelative predicts the test set with
a mean absolute error of 1.51 cycles and a mean relative error of 10.97%.

Figure 4c shows the performance prediction for HVS and HVSrelative on the
X × 16 stencils. Each square represents a unique (X,Y, T ) configuration. Inside
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each square the performance is plotted depending on the matrix size N×M . The
kernel is slowest for high Y stencils whose column order accesses stress the cache.
In comparison, X stencil’s size impact on performance is negligible. Performance
degrades for large matrices, as shown from the darker top-right corners of each
square, probably because the matrices exceed the L2 cache capacity. Therefore,
choosing an adequate blocking factor should improve the performance. On ASK
HVS’ 32-core model the mean speed-up obtained by varying the matrix size is
1.65. Using a small matrix with a high number of threads is detrimental because
the cost of synchronization predominates.

On both 8 and 32-core targets the stencil code scales linearly up to, respec-
tively, 8 and 32 threads. As an example, the scalability of the application was
studied on the 8 × 8 stencil on a 1 000 × 1 000 matrix. Figure 4d shows the
performance per number of threads predicted by the HVSrelative strategy. The
prediction follows the measured true response. The matrix sizes explored fit into
the socket’s 18Mb L3 cache, additionnaly the 2D stencil beneficiates from data
reuse, which explains the strong scaling.

Measuring the whole design space would take centuries whereas ASK adap-
tive sampling took less than an hour of experiment time with a 1.76 RMSE.
ASK is both efficient when dealing with narrow design spaces, as in ai aik, and
large design space, as in the stencil codes experiment.

6 Conclusion

Adaptive sampling techniques drastically reduce exploration time of large design
spaces. Nevertheless, choosing the right technique can be difficult for a perfor-
mance architect. ASK provides an homogeneous interface to multiple state of
the art sampling strategies, making the process easier. Adding new strategies to
the framework is straightforward due to ASK’s modular architecture.

The new HVS strategy reduces experimental bias and is comparable, or even
outperforms, other state of the art approaches in two case studies. The stencil
code design space, which has more than 31.108 points, was accurately predicted
using only 1 500 points. The performance characterization field could benefit
from adaptive sampling techniques. Hopefully, ASK’s open source release will
facilitate their adoption.

Currently, users must try different models manually to find what is best suited
to their experiment. Automatic model and sampling selection techniques [11, 21]
applied to performance experiments will be investigated in future works.

ASK will soon be released at http://code.google.com/p/adaptive-sampling-
kit. The experimental data and benchmarks used to produce the paper results
are available at the same URL.
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