
1

CERE: LLVM based Codelet Extractor and REplayer for Piecewise
Benchmarking and Optimization

PABLO DE OLIVEIRA CASTRO, Université de Versailles Saint-Quentin-en-Yvelines
and Exascale Computing Research
CHADI AKEL, Exascale Computing Research
ERIC PETIT, Université de Versailles Saint-Quentin-en-Yvelines
MIHAIL POPOV, Université de Versailles Saint-Quentin-en-Yvelines
WILLIAM JALBY, Exascale Computing Research

This paper presents Codelet Extractor and REplayer (CERE), an open source framework for code isola-
tion. CERE finds and extracts the hotspots of an application as isolated fragments of code, called codelets.
Codelets can be modified, compiled, run, and measured independently from the original application. Code
isolation reduces benchmarking cost and allows piecewise optimization of an application. Unlike previous
approaches, CERE isolates codes at the compiler Intermediate Representation (IR) level. Therefore CERE
is language agnostic and supports many input languages such as C, C++, Fortran, and D. CERE automat-
ically detects codelets invocations that have the same performance behavior. Then, it selects a reduced set
of representative codelets and invocations, much faster to replay, which still captures accurately the origi-
nal application. In addition, CERE supports recompiling and retargeting the extracted codelets. Therefore,
CERE can be used for cross-architecture performance prediction or piecewise code optimization. On the
SPEC 2006 FP benchmarks, CERE codelets cover 90.9% and accurately replay 66.3% of the execution time.
We use CERE codelets in a realistic study to evaluate three different architectures on the NAS benchmarks.
CERE accurately estimates each architecture performance and is 7.3× to 46.6× cheaper than running the
full benchmark.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement Techniques, Modeling
Techniques; B.8.2 [Performance and Reliability]: Performance Analysis and Design Aids

General Terms: Performance, Measurement

Additional Key Words and Phrases: program replay, checkpoint restart, iterative optimization, performance
prediction

ACM Reference Format:
Pablo de Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov and William Jalby. 2015. CERE: LLVM based
Codelet Extractor and REplayer for Piecewise Benchmarking and Optimization. ACM Trans. Architec. Code
Optim. 12, 1, Article 1 (April 2015), 25 pages.
DOI:http://dx.doi.org/10.1145/2744295.2724717

New Paper, Not an Extension of a Conference Paper. This work has been conducted in part in the Exascale
Computing Research laboratory, thanks to the support of CEA, GENCI, Intel, and UVSQ; and in part in the
ITEA2 Coloc project. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the CEA, GENCI, Intel, or UVSQ.
Authors’ addresses: P. de Oliveira Castro, C. Akel, E. Petit, M. Popov, and W. Jalby, Université de Versailles
Saint-Quentin-en-Yvelines, 78035 Versailles France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1544-3566/2015/04-ART1 $15.00
DOI:http://dx.doi.org/10.1145/2744295.2724717

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:2 P. de Oliveira Castro et al.

1. INTRODUCTION
Performance evaluation for optimization, system benchmarking, or compiler evalua-
tion is time and resource consuming. The expensive cost limits the number of iterations
engineers can perform in a given budget. Different approaches to overcome this limita-
tion have been proposed by the community, such as analytical models [Hong and Kim
2010; Marin and Mellor-Crummey 2004], machine learning [Cavazos et al. 2006; Pe-
tit et al. 2012], checkpoint-restart [Haine et al. 2014], or simulations [Sherwood et al.
2001]. An interesting and versatile approach is code isolation [Lee and Hall 2005; Petit
et al. 2006; Liao et al. 2010; Akel et al. 2013]. Usually, in scientific applications, the
hotspots represent a small fraction of the total source lines [Knuth 1971]. Code isola-
tion finds and extracts the hotspots of an application as standalone fragments of code,
called codelets. Codelets can be compiled and replayed independently from the original
application. For each codelet, the isolation process captures the memory working set
and the relevant machine state such as the cache content to achieve realistic replays.

Breaking an application into independent codelets provides multiple benefits. Exe-
cuting isolated codelets instead of whole applications is faster and enables piecewise
evaluation and optimization of an application. Indeed, different codelets may expose
different performance bottlenecks and react differently to optimizations. With code
isolation they can be individually modified to evaluate the payoff of new optimiza-
tions and tune performance at a fine-grain level. Fast benchmarking and system se-
lection [de Oliveira Castro et al. 2014] can be achieved by replaying a reduced set of
carefully selected codelets.

Effective code isolation raises multiple challenges. First, to be practical, isolation
must support many programming languages, applications, and optimizations. Second,
codelets should be replayable on a variety of target architectures. Third, to achieve
accurate performance measures, the memory working set and cache state must be
captured and restored before each replay. Tracing the memory is a complex and costly
process which must be tuned to get a good trade-off between capture overhead and ac-
curacy of replay. Fourth, different invocations of the same codelet may have different
performance behaviors, which depend on the working set and cache state of each in-
vocation. Nevertheless, we observe that the invocations can be clustered in a reduced
number of representative performance classes. As a result, replaying one codelet in-
dependently from the rest of the application can be several order of magnitude faster
than to replay the full application. As demonstrated on the use case of section 4.3, this
speedup brings a substantial advantage for piecewise benchmarking and optimization.

In this paper, we propose CERE, an IR level code extractor framework based on
LLVM. CERE extracts and replays the application source loops as codelets. Our con-
tribution is composed of an instrumenter, a clustering approach to find representative
invocations and representative codelets, a working set capture mechanism operating
at the system memory page granularity, and a realistic access history cache warmup.
CERE is made available under the MIT open-source license.

Figure 1 presents the full CERE pipeline. CERE takes as an input the source files
of an application or a benchmark suite. All the languages supported by the LLVM
front-ends (C, C++, Fortran, D, etc.) are accepted. The source loops are outlined and
instrumented with profiling probes to identify the application hotspots. We filter out
short loops that contribute less than 1% to the execution time. An optional codelet sim-
ilarity analysis [de Oliveira Castro et al. 2014] selects a minimal set of representative
codelets. Then, a clustering algorithm analyzes the performance trace of each codelet
to find a representative subset of invocations. The memory and cache state of each se-
lected invocation is then captured and dumped to disk. The output of this process is a
set of representative codelets and invocations, which can be redistributed, recompiled

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:3

Fig. 1: CERE usage diagram. Applications are partitioned into a set of codelets, which
may be pruned using different criteria. A set of representative invocations are selected
and captured. The codelets can then be replayed with different options and on different
targets to do piecewise optimization or predict performance. (LLVM logo courtesy of
Apple Inc.)

and replayed on different systems and architectures. The codelet set can be used as a
proxy for original application in optimization or benchmarking studies.

We evaluate CERE on the NAS [Bailey et al. 1991] and the SPEC 2006 FP [Henning
2006] benchmarks. CERE’s codelets capture 90.9% of the SPEC benchmarks run-time
and accurately replay 66.3% of their execution time. Section 4.2 demonstrates how
CERE codelets can be used to quickly compare the performance of three different ar-
chitectures on the NAS benchmarks. CERE accurately estimates each architecture
performance and is 7.3× to 46.6× cheaper than running the full benchmark. When
working on a single kernel, the cost of replay is even lower, for example the industrial
test case of section 4.3 shows a 237× reduction.

Section 2 presents the state of the art for code isolation, memory capture, and cache
warmup approaches. Section 3 gives an overview of the CERE framework. Section 4
evaluates CERE on the NAS and SPEC benchmarks, and showcases CERE on two
use cases. First, it shows how CERE can accelerate system benchmarking by finding a
small subset of representative codelets. Second, it shows how to use CERE to speedup
compiler auto-tuning on a depth-imaging proto-application.

2. BACKGROUND
In this section, we review previous works on codelet extraction, working set capture,
cache capture, and practical applications of codelets.

2.1. Codelet extraction
Code isolation and replay raise several challenges. The first one is choosing the right
granularity for code isolation. Two possibilities have been proposed in previous works:
assembly isolation and source code isolation. CERE explores a new level: Intermediate
Representation (IR) isolation.

Assembly isolation [Sherwood et al. 2001; Sherwood et al. 2002; Lafage and Seznec
2001] extracts codelets as blocks of assembly instructions. Simpoint [Sherwood et al.
2001] successfully speeds up architecture simulation by sampling a limited number
of assembly codelets. Yet assembly isolation is not practical for performance tuning

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:4 P. de Oliveira Castro et al.

because the assembly code cannot be recompiled with different performance flags or
easily retargeted to a new architecture. The extraction software is tied to a specific
instruction set architecture. It is also difficult to map assembly codelets to source code
regions. However, this approach is language agnostic and resilient to the compiler ef-
fect: what you extract is what is executed.

Source code isolation [Akel et al. 2013; Lee and Hall 2005; Petit et al. 2006; Liao
et al. 2010] is portable and can be easily used to tune compiler options [Kashnikov
et al. 2013] or to select the best architecture [de Oliveira Castro et al. 2014]. Further-
more, because extraction occurs at source level, before compiler transformations, the
performance information gathered during replay can be easily mapped to the source
high-level constructs. Unfortunately, source code isolation requires a specific parser
and extraction process for each language. Therefore supporting multiple languages
is extremely costly because writing a robust extraction pass for complex languages,
such as C++, is technically challenging. Finally one must ensure that the source level
extraction process does not alter the performance behavior of the original hotspot. In-
deed, some of the transformations used during source isolation may hinder compiler
optimization passes [Akel et al. 2013; Liao et al. 2010].

In our work, we explore code isolation at the IR level which provides a good trade-off
between assembly and source code isolation. We choose to target the LLVM [Lattner
and Adve 2004] compiler IR. CERE extraction is therefore tied to the LLVM compiler
but it supports all of LLVM front-ends and back-ends with no extra engineering cost.
Extracting codelets at the IR level is much simpler than at the source code level which
requires parsing complex input languages. It also facilitates the process of instrument-
ing the code, capturing the memory and outlining the codelet thanks to the powerful
integrated flow analysis passes as detailed in section 3.

IR codelets provide many performance tuning opportunities. For instance, the
codelet can be replayed using different LLVM optimization passes or versions, enabling
compiler flag auto-tuning [Kashnikov et al. 2013]. By leveraging the available LLVM
code generation back-ends, codelets can be replayed on different architectures to facil-
itate system co-design (see section 4.2).

2.2. Memory capture and cache warmup
Memory capture raises two challenges: capturing the codelet working set, and the
cache hot set.

Memory capture . Before replaying a codelet, the memory state from the original ex-
ecution must be restored. This ensures that the replayed execution will be equivalent
to the original one even considering data dependent branching code.

Multiple techniques exist to checkpoint the original memory state. Code Isola-
tor [Lee and Hall 2005] analyzes the static data flow of the original application to deter-
mine which data structures need to be captured. This method produces small dumps
because only the required data are captured, but cannot deal with pointer aliasing.
Astex [Petit et al. 2006] captures the convex hulls of the memory accesses. However it
does not preserve the data layout information and does not remap the memory at the
same addresses during replay. Therefore pointer based structures such as linked lists
are not supported.

Codelet Finder [CAPS 2013; Akel et al. 2013] takes a full snapshot of the original
application address space. A full memory dump is very large but handles the pointer
aliasing problem since the full memory is recorded. It also preserves the relative align-
ment and offsets among data structures. Nevertheless, a full snapshot of the applica-
tion memory for each codelet can be prohibitive in terms of memory and replay time.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:5

In this paper we propose a page level granularity snapshot. Using the memory pro-
tection mechanism we capture the memory pages containing the working set. Dur-
ing replay we remap this set of pages at their original addresses. This ensures that
the dump remains small and fast. Furthermore, the replay works even with complex
pointer aliasing, because the memory layout is preserved.

Cache capture. Capturing the memory working set of the original execution ensures
that during the replay, the data accessed are the same as during the original run.
However, it is not enough to guarantee that the replay and original run have the same
execution time. Indeed, to faithfully capture the performance of the original region it
is necessary to warm up the system to match as close as possible the original context.
This issue is referred to as the cold start bias.

Usual techniques [Kessler et al. 1994] mitigate cold start bias by modeling the
warmup effects during a window of time preceding the region of interest. Multiple
heuristics [Conte et al. 1996; Haskins Jr and Skadron 2003] have been proposed to
optimally determine the window’s size.

Two main approaches have been proposed in the literature for cache state warmup
in code isolation. The first approach is to warm up the cache by running a few ex-
ecutions of the codelet itself [Petit et al. 2006; CAPS 2013; Akel et al. 2013]. The
rationale is that the hotspots forming the codelets are loop based and thus can be
warmed up by their own previous iterations. This heuristic proves to be efficient in
many cases [de Oliveira Castro et al. 2014; Akel et al. 2013]. The second, more accu-
rate approach, warms up the cache by replaying the history of the memory accesses
in a simulator [Sherwood et al. 2001] or using a warmup routine [Lee and Hall 2005].
These techniques require to trace memory accesses which is costly and incurs signifi-
cant slowdowns [Gao et al. 2005].

In this paper, we propose two warmup approaches. The first is an optimistic warmup
strategy that preloads the whole working set into the cache. The second, is a page
memory tracing technique, which warms the cache by replaying memory access history
at the memory page granularity.

2.3. Invocation and codelet subsetting
The last challenge in code isolation is reducing the replay and codelet capture cost.
The replay and capture cost is related to two quantities: the number of codelets and
the number of invocations to capture and replay. When codelets or invocations have
similar behaviors, it is desirable to only capture and replay a representative subset.

A single region in a program may be called thousands of times with different work-
ing sets and cache states. Capturing each individual invocation is prohibitive. Akel
et al. [2013], Lee and Hall [2005], and Petit et al. [2006] allow the user to manu-
ally choose which invocations should be captured and replayed. Sherwood et al. [2002]
identify similar computation phases by computing the distance between the region’s
Basic Block Vectors. Other works [Eeckhout et al. 2005; Hoste et al. 2006; Hoste and
Eeckhout 2006; 2007; Phansalkar et al. 2007; de Oliveira Castro et al. 2014] use per-
formance feature vectors as a measure of region similarity.

CERE includes both an invocation clustering approach that automatically selects
representative invocations and a codelet clustering approach that selects representa-
tive codelets. Combined, these reduction techniques significantly lower the number of
required capture and replay runs.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:6 P. de Oliveira Castro et al.

3. CERE: CODELET EXTRACTOR AND REPLAYER
3.1. IR Capture and Replay Overview
CERE (Codelet Extractor and REplayer) targets the LLVM Intermediate Represen-
tation. IR provides multiple advantages over source or assembly code isolation tech-
niques as discussed in section 2.1.

Because it operates at the IR level, CERE can use any LLVM front-ends. For example
CERE has been tested on all NAS and SPEC 2006 FP programs. While C and C++
benchmarks used the Clang front-end, Fortran programs used the GCC gfortran front-
end through the dragonegg plugin [Sands 2009]. CERE also works on less mainstream
languages. For example CERE successfully extracts codelets from D [Alexandrescu
2010] applications compiled with the LLVM D front-end, LDC.

Table I presents CERE’s capture and replay process of a selected codelet. In Step 1,
the input program is compiled to LLVM IR.

In Step 2, the region to be captured is outlined in a separate function using the Code-
Extractor LLVM pass. CodeExtractor does a flow analysis to detect all the live-in and
live-out dependencies of the region to extract [Mikushin et al. 2013]. This pass simpli-
fies the codelet extraction process, since it extracts the region code in its own function.
The codelet region is outlined in a new function. Finally CodeExtractor inserts a call to
the outlined function in the original code. The dependencies are preserved by passing
the live-in and live-out values through function arguments. CodeExtractor is also the
starting point for our portable memory capture mechanism discussed in section 3.4.

Step 3 generates the instrumented binary for memory capture. It inserts special
calls to our capture library before and after the outlined region in the original appli-
cation. The calls are used to trigger the memory and cache warmup state captures,
described in sections 3.4 and 3.5. The instrumented binary execution generates a set
of dump files that can be used during replay to restore the memory state and to warm
up the caches. The aim is to ensure that the replay context closely mimics the original
execution context.

Step 4 is the replay mechanism. It generates a wrapper to directly call the outlined
region. This wrapper performs important steps to restore the original execution envi-
ronment, such as variable cloning, cache and memory restoration. The replay IR code
can be compiled with different optimization flags to find the best performance configu-
ration. Or it can be compiled with different back-ends to evaluate the performance on
multiple targets. The replay process is detailed in section 3.6.

3.2. Application Partitioning
To find interesting codelets for performance optimization, CERE concentrates on the
application hotspots. In scientific applications, performance is mainly concentrated on
loops. Therefore, CERE considers all the loops of the original program as potential
candidates to be extracted as codelets. Then, CERE profiles the candidate loops and
keeps the ones significantly contributing to the total execution time.

CERE provides two loop level profiler modes. First, a low overhead sampling profiler
based on the Google Performance Tools library [gpe v221]. Second, an instrumentation
profiler, which is slower but more precise. When using sampling, CERE outlines the
loops before executing the application; all the outlined loops are profiled using Google’s
performance toolkit. When using the instrumentation mode, probes to capture the time
stamp counter are inserted directly before and after the loop.

Despite our efforts to restore the original execution environment through warmup
code reinlining, and variable cloning (see sections 3.5 and 3.6), the codelet replay
sometimes does not match the original loop performance. Clearly, those ill behaved
codelets cannot be used as a performance proxy in benchmarking or optimization stud-

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:7

Step Output
1 Front-end: Transform the C, C++,

Fortran, D input program into LLVM
Intermediate Representation (uses
Clang, dragonegg, or LDC).

original:
%0 = load i32* %i, align 4
%1 = load i32* %s.addr, align 4
%cmp = icmp slt i32 %0, %1
br i1 %cmp, ; loop branch here
label %for.body,
label %for.exitStub ...

2 Outline: Outline the region to extract.
Flow analysis is used to compute all
live-in and live-out values which are
passed as arguments. (see section 3.3)

define internal void @outlined(i32* %i,
i32* %s.addr, i32** %a.addr) {

%0 = load i32* %i, align 4
...
ret void }

original:
call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr)

3 Capture: Insert calls to CERE capture
library. Run the instrumented binary
to capture the run-time state. (see sec-
tions 3.4 and 3.5)

define internal void @outlined(i32* %i,
i32* %s.addr, i32** %a.addr) {

call void @start_capture(i32* %i,
i32* %s.addr, i32** %a.addr)

%0 = load i32* %i, align 4
...
call void @end_capture()
ret void }

4 Replay: Generate minimal replay
wrapper that calls the outlined region.
Compile and run replay possibly with
new optimization options or on a dif-
ferent architecture. (see section 3.6)

define i32 @main(i32 %argc, i8** %argv){
; Allocate clone variables
%i = alloca i32
%s.addr = alloca i32
%a.addr = alloca i32*
; Restore arguments and memory
call void @restore(...)
; Call outlined region
call void @outlined(i32* %i,

i32* %s.addr, i32** %a.addr
; Anti-deadcode for live-out values
call void @antideadcode(i32* %i)}

Table I: Codelet capture and replay main steps.

ies. Therefore CERE runs a sanity check where it replays and profiles each codelet to
ensure that only valid codelets are returned to the user. The tolerated discrepancy
threshold can be configured. Its sensitivity is presented on figure 3. In this paper we
consider that codelets match the original performance when the replay error is under
15%.

After collecting profile data, CERE produces an annotated call graph such as the
graph in figure 2. This call graph is then pruned by removing the loops contributing
for less than 1% to the total execution time. Furthermore, if an ill behaved codelet is
detected, CERE also removes it from the call graph. When removing a loop from the
call graph, we propagate its self time to its parent codelets. In our example, the time

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:8 P. de Oliveira Castro et al.

gromacs

core:1403 (4.7%)

19.2%

do_longrange:1264 (0.1%)

0%

do_fnbf:232 (0.76%)

78.1%

gromacs

13.5%

13.4%

inl1130:3932 (88.4%)

88.4%

inl1100:3130 (0.6%)

0.6%

inl0100:84 (0.6%)

0.6%

inl1120:3594 (0.6%)

0.6%

core:1403 (4.8%)

19.2%

do_fnbf:232 (2.55%)

78.1%

13.4%

inl1130:3932 (88.4%)

88.4%

Filtering

codelet error (%)

do longrange 2.3
do fnbf 1.1
inl1130 0.1
inl0100 10.1
inl1120 4.6
inl1100 7.5
core 2.5

Fig. 2: (left) CERE call graph, before and after filtering, for SPEC 2006 gromacs. Each
node represents a captured codelet. The percentage inside the node is the codelet’s self
time. Edges represent calls to other codelets, the edge percentage is the time spent in
calls to those nested codelets. (right) Replay percentage error of gromacs codelets using
Working Set warmup.

0

25

50

75

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Tolerated Percentage Error

%
 o

f
E

xe
c
u
ti
o
n
 T

im
e

NAS & SPEC mean median

Fig. 3: Mean and median captured execution time as a function of the tolerated replay
error. the NAS and SPEC 2006 FP benchmarks. The mean is lower than the median
due to the IO-intensive and short kernel benchmarks described in section 4.1, which
skew the distribution.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:9

from the three inl removed loops is propagated to their caller do fnbf. In the example
of figure 2, since all the codelets match the original execution time, none would be
removed.

Once the removal process is over, CERE extracts all the remaining loops as stan-
dalone codelets.

The above selection algorithm extracts all the well behaved codelets whose contri-
bution to the program execution time is over a given threshold. To trade coverage
for replay time, for example, when using codelets to accelerate system benchmarking,
the user wants the minimal set of codelets that can be quickly replayed while simul-
taneously capturing the application performance accurately. For this purpose, CERE
includes a codelet selector that uses integer linear programming to find an optimal
codelet set. It is similar to the tuning selection algorithm proposed by Pan and Eigen-
mann [2006]. In the example in figure 2 it would drop codelets do fnbf and core, losing
less than 7.35% coverage but significantly reducing the replay cost.

3.3. Codelet checkpoint-restart strategy
Traditional checkpoint techniques [Duell 2005] can save the state of a program at any
given point. A full dump of the memory and of the register banks including the program
counter allows to restart the program after capture. Yet, this approach requires that
the replayed code keeps the same code layout and uses exactly the same registers as
during the capture. Traditional checkpointing is therefore not suited to test compiler
optimizations which may remap registers or change code layout. Also it limits codelet
portability to architectures sharing the same Application Binary Interface (ABI) and
register layout.

Codelet based piecewise iterative optimization and architecture selection require
a portable checkpoint-restart strategy. The outlining pass (Step 2 in Table I) wraps
and isolates the region of interest inside a separate function. Because the region now
follows a function call, we can guarantee that the accessed data is either in memory or
is passed as arguments to the outlined function.

This enables us to simplify the memory capture process: only the memory and argu-
ments to the outlined function must be recorded. Also, the outlined function prototype
acts as a clean interface that enables us to recompile and apply transformations to
the codelet before replay. Because no assumptions about the register layout are made,
codelets are portable across architectures that do not change the memory layout, such
as word size and endianness. Our tests have shown, for example, that our codelet re-
player allows to recompile changing optimization flags, capturing on -O0 but replaying
on -O3, or changing architectures, capturing on Core Duo and replaying on Atom.

Codelet portability has been extensively tested and works across six different Intel
CPU generations (Atom, Core 2 Duo, Nehalem, Sandy Bridge, Ivy Bridge, and Haswell)
running various 64-bit Linux distributions on the NAS and SPEC codelets.

We also tested codelet portability between an Intel Core i3 running 32-bit Linux and
an embedded target, an ARM1176JZF-S on a Raspberry Pi Model B+ running 32-bit
Linux. This test was conducted on a simple benchmark summing the elements of a
large integer array. The capture was performed on the Core i3 system and could be
faithfully replayed on the ARM embedded target.

In a second experiment the capture was done on the same Intel Core i3, but this
time the system was 64-bit Linux; therefore some of the dumped pages were over the
32 bit address space limit. The replay on the ARM system failed because addresses
over 32 bits overflowed. This example illustrates the limits of CERE: portability does
not work out of the box for systems with different memory address sizes. Neverthe-
less, in this case we were able to overcome this limitation by manually remapping the
memory dump to fit the 32 bit address space by masking the address’ upper bits. After

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:10 P. de Oliveira Castro et al.

region

to capture

protect static and currently allocated

process memory (/proc/self/maps)

intercept memory allocation functions

with LD_PRELOAD

1 allocate memory

2 protect memory and return

to user program

segmentation

fault handler

1 dump accessed memory to disk

2 unlock accessed page and return

to user program

a[i]++;

memory

access

a = malloc(256);

memory

allocation

Fig. 4: The memory dump process operates at page granularity. Each page accessed is
dumped by intercepting the first touch using memory protection support.

94

27

106

26

51

1

367

117
131

46

89

8

472

101 96

22

0

50

100

150

200

bt cg ep ft is lu mg sp

S
iz

e
 (

M
B

)

full dump (Codelet Finder) page granularity dump (CERE)

Fig. 5: Comparison between the page capture and full dump size on NAS.A bench-
marks. CERE page granularity dump only contains the pages accessed by a codelet.
Therefore it is much smaller than a full memory dump.

the manual remapping, we were able to replay the benchmark in the ARM1176JZF-S
processor.

The outlining process guarantees that codelets captured once, can be distributed and
replayed many times on multiple architectures.

3.4. Capturing the memory
CERE captures codelet’s working sets by intercepting accesses to the memory pages.
Page level capture combines the advantages of the full memory dump in Codelet
Finder [Akel et al. 2013] with the advantages of the data flow capture in Code Iso-
lator [Lee and Hall 2005] or Astex [Petit et al. 2006]. First, CERE guarantees that all
the memory locations accessed by the original program are dumped, including aliases
that are not handled with static analysis. The set of captured pages contain the full
original working set. Second, because only the touched pages are saved, the memory

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:11

for (i=0; i < size; i++)

 a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO

(most recently unprotected)

warmup page trace

Fig. 6: Cache page tracer on a simple codelet adding two arrays. Each page access is
logged. Recently unprotected pages are kept in a FIFO with N slots (here N = 4). Once
evicted from the FIFO, the pages are protected again.

dump is the smallest page-granularity over-approximation. Therefore, it can be easily
stored and distributed.

Figure 4 shows the memory dump process. First, all the memory pages of the process
are protected and a special segmentation fault handler is set. Each time a protected
page is accessed, a segmentation fault occurs and triggers the handler. The handler
dumps the touched memory page to disk and unprotects it before continuing the origi-
nal program execution.

It is important to protect all newly allocated memory. If memory is allocated but re-
turned to the user unprotected, the tracer misses the access to the memory segment.
We catch all calls to the memory allocation library, such as malloc, realloc, or mema-
lign using the LD PRELOAD mechanism. However, some special memory sections must
not be protected, such as the pages containing the code of the tracing library and the
segmentation fault handler itself. Therefore CERE carefully avoids protecting its own
pages and system specific memory segments.

Figure 5 compares the average dump size for the NAS benchmark codelets for two
techniques: CERE’s page granularity dump and Codelet Finder’s full dump. As can be
seen, the page granularity dump is 3 to 51 times smaller than a full dump. With this
technique CERE extracts light portable codelets from industrial application with large
working sets.

3.5. Capturing the cache state
In this section, we address the problem of cache warmup for codelet replay previously
discussed in section 2.2. CERE includes three warmup strategies: Cold, Working Set,
and Page Trace.

The Cold strategy does not do any warmup before executing the codelet. It is there-
fore inaccurate but has no overhead. It can be used on long codelets for which the cold
start bias is negligible.

The Working Set strategy prefetches the full working set of the codelet before its
execution. It is an optimistic strategy that assumes that the codelet working set was
already in cache in the original execution.

The Page Trace strategy mitigates cold start bias by replaying a memory trace at a
page level granularity. It is less accurate than a full memory trace warmup, but much
faster. It provides a good trade-off between cost of codelet capture and replay accuracy.
The technique is similar to the page tracing technique in [Burton and Kelly 2006].

Our page tracer is implemented on top of the memory dump process described in
section 3.4: all the memory pages are protected, and a special segmentation fault han-

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:12 P. de Oliveira Castro et al.

lu

60

70

80

90

100

5 10 15 20 25 30 35 40 45 50 55 60

Tolerated Error (%)

%
 o

f
E

xe
c
u
ti
o

n
 T

im
e

cold (no warmup) working set page trace

Fig. 7: Comparison of the three cache warmup techniques included in CERE on NAS
codelets. The plot shows the percentage of execution time as a function of the replay
error. Page Trace and Working Set warmup achieve the best results. Page Trace is
more accurate than Working Set on the LU benchmark.

27.6
19.4

1.5

24.1

257.1

62.4

8.9

73.2

59.3

0

25

50

75

100

bt cg ep ft is lu m
g sp

av
er

ag
e

c
a

p
tu

re
 s

lo
w

d
o
w

n

(a) CERE capture overhead (Class A)

ATOM 3.25 PIN 1.71 Dyninst 4.0

cg.a 98.82 222.67 896.86
ft.a 44.22 127.64 1054.70
lu.a 80.72 153.46 >>301.4
mg.a 107.69 168.61 989.53
sp.a 67.56 93.04 >>203.66

(b) Overhead of other memory tracers

Fig. 8: CERE capture overhead. For each plot we measure the slowdown of a full cap-
ture run against the original application run. (The overhead takes into account the
cost of writing the memory dumps and logs to disk and of tracing the memory accesses
during the whole execution.). We compare to the overhead of other memory tracing
tools as reported by Gao et al. [2005]. Gao et al. did not measure bt, is, and ep.

dler intercepts accesses to memory. The difference is that unlike the memory dump in
which only the first touch to a page is important, the page tracer should capture all
the memory accesses to a page.

An exact, but costly, technique involves reprotecting each page after each access.
Because this page is immediately reprotected, further accesses to the page will provoke
a segmentation fault and will be logged by the tracer. The slowdown is too high for our
purposes.

To reduce the cost of the technique, we keep the most N recently accessed pages
unprotected. The tracer uses a FIFO to track the recently accessed pages. Each time
an access to a page is detected, the page is unprotected and added to the FIFO. The
oldest page is popped from the FIFO, reprotected, and added to the page access log.
Figure 6 illustrates this approach on a codelet that adds two arrays together.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:13

If a codelet simultaneously accesses less than N separate memory streams, the FIFO
ensures that a page remains unprotected for all the consecutive streamed accesses.
Assuming a stride-one access, the page tracer handler is only invoked every 4096 byte
(for 4K pages). Therefore we choose N higher than the number of separate memory
streams accessed by most loops. Kashnikov et al. [2013] show that most application
loops use less than 16 simultaneous streams. In our experiments we choose N = 64.
Nevertheless, by keeping the most recent N pages unprotected, our trace is less accu-
rate. In the code of figure 6 for instance, each cell of array a is accessed twice (it is first
read then written to), but the page tracer only sees the first access. When interpreting
the trace, one must keep this inaccuracy in mind: the trace presents which pages were
accessed but neither how many times nor the precise ordering.

Figure 7 compares the three warmup techniques implemented in CERE on the NAS
benchmarks. The tolerated error is the maximum percentage difference between the
original execution time and the replayed execution time. The plot shows the percent-
age of execution time of NAS codelets replayed with an error smaller than the tolerated
error. For example, if we use the Cold strategy, 70% of the execution time can be re-
played with an error under 15%.

Figure 8 shows the overhead of the capture run for the NAS benchmarks. For each
benchmark we compute the slowdown between the original run-time and a full capture
run. This measure includes initialization of the capture library, writing the dumped
pages and the memory trace logs to disk for all the codelets in the application. IS is
particularly slow because one of its codelets accesses memory randomly. This rapidly
fills the pages FIFO and slows down the tracer. Figure 8 also compares CERE capture
cost with the overhead of other memory tracing tools. CERE overhead is similar to
ATOM 3.25 overhead and lower than PIN 1.71 and Dyninst 4.0 overhead.

When the user is only interested in a single codelet, CERE includes a single-capture
mode which is much faster. The capture library fast-forwards the execution and starts
the memory tracer and memory protection when the execution is reaching the zone
of interest, but leaving a big-enough window to capture the cache warmup log. Conte
et al. [1996] and Haskins Jr and Skadron [2003] propose multiple techniques to deter-
mine the best window size.

We observe that the Working Set and Page Trace strategies significantly improve
the replay accuracy. On the NAS codelets, the Page Trace strategy is slightly better
than the Working Set one. The improvement comes from LU codelets whose irregular
accesses are better captured by the Page Trace warmup. Section 4.3 shows another ex-
ample where the Page Trace warmup is more accurate than the Working Set optimistic
warmup.

3.6. Replay
Once the memory and cache state are captured, a codelet can be replayed. Because
codelet replay is fast, it is useful to quickly evaluate the impact of moving to a different
architecture or changing compiler optimizations.

To replay a codelet, CERE generates the special wrapper shown in Step 4 of Table I.
First, it allocates clone variables for the input and output flow dependencies to the out-
lined region. Second, it restores memory and cache state. Finally, it calls the outlined
region.

A first remark is that the outlined region results are not used when returning from
the call to the codelet. Therefore, LLVM dead code elimination pass is free to fully
optimize by removing this call. Clearly that is not our purpose. Therefore, during re-
play we insert, for each live-out variable, a special antideadcode call. It is an empty
extern function which forces LLVM to keep the codelet’s code, even when using highly
aggressive optimization levels such as -O3.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:14 P. de Oliveira Castro et al.

0e+00

2e+07

4e+07

6e+07

8e+07

0 1000 2000 3000

invocation

C
y
c
le

s

replay

(a) SPEC tonto make ft@shell2.F90:1133 execution
trace.

0

10

20

30

1 2 3 4 5 6 7 8

Performance classes

F
re

q
u

e
n

c
y

(b) Distribution of the number of rep-
resentative performance classes across
all NAS benchmarks.

Fig. 9: Working set reduction: (a) A clustering analysis of tonto’s trace detects four dif-
ferent performance behaviors depending on the workload. The initial 3587 invocations
are captured with only four representative replays. (b) Most of the NAS codelets can
be captured with less than four representative working sets.

A second remark is that the outlining compilation pass dereferences the input and
output dependencies. By passing the variables by reference, it is easy to preserve the
values modifications during the codelet execution. This is a classic technique in code
outliners [Lee and Hall 2005; Liao et al. 2010] which has the unfortunate side-effect of
disabling many compiler optimizations. In many codelets, dereferencing makes codelet
replay slower and therefore unfit to be used as performance proxies of the original code.
We solve this problem in three steps. First, we tag each dereferenced pointer with the
IR attribute NoAlias which informs LLVM that the dereferenced pointer is not aliased.
This is known because the extra dereference is created by CERE outliner and used
only once during replay. Second, we tag the outlined function itself with the attribute
AlwaysInline which forces LLVM to reinline the function in the replay wrapper. Third,
LLVM alias analysis optimization pass removes the extra layer of dereference. In sec-
tion 4 the effect of reinlining and marking cloned variables as NoAlias are measured.
These two techniques improve replay accuracy in eleven applications without degrad-
ing the other benchmarks

One could think that the outlining step is unnecessary since it is reverted later on
by LLVM inliner pass. But as explained in section 3.3, the outlining step guarantees
that CERE finds a safe checkpoint to capture the context just before a procedure call.

Once the replay wrapper is generated, it is compiled and possibly optimized depend-
ing on the optimization flags selected by the user. To generate the final replay binary,
CERE uses a custom link script, that reserves the virtual memory segments occupied
by the working set pages during the memory capture. This step is needed so that CERE
can preserve the original memory layout.

3.7. Invocation Selection
Inside an application, the same codelet may be called multiple times. In many codes
two invocations of the same codelet may have different execution times. This is due to
the different working sets or initial conditions.

For example, the codelet make ft@shell2.F90:1133 extracted from tonto is one of
the steps of a specialized Fast Fourier Transformation. In the original application, this
loop is called 3587 times with different workloads. Figure 9a shows its execution trace.
A cluster analysis of the invocations reveal that they can be sorted into 4 performance

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:15

behaviors, which are represented with different colors in the figure. Other codelets
such as flux lam@flux.f:58 extracted from bwaves, have a constant workload size but
the first invocation is slower because of cache warmup effects.

To accurately replay a codelet, we must capture each different invocation state.
When the number of invocations is high, this process becomes costly both in time and
space. Fortunately, applications exhibit some regularity; and most of the time the invo-
cations can be reduced to a few representative classes. Figure 9b shows the distribution
of the number of different classes across all NAS benchmarks. One can note that most
of the codelets can be captured with less than 4 representatives. The fact that the per-
formance of a program can be reduced to a few number of representatives has been
observed in other domains such as value profiling [Khan et al. 2008; Petit and Bodin
2010; Calder et al. 1997] and iterative compilation [Chen et al. 2010].

To automatically detect the performance classes and generate a set of representa-
tive captures, we use a clustering algorithm. Some of the codelets in our benchmarks
have large traces with more than 109 invocations and cannot be analyzed using tra-
ditional clustering algorithms such as hierarchical clustering or K-means. To be able
to efficiently process such large data sets CERE uses CLARA (CLustering LARge Ap-
plications) algorithm [Kaufman and Rousseeuw 2009]. CLARA relies on sampling to
reduce the cost of clustering. It extracts a random sample from the original data set
and find the cluster medoids. The sampling process is repeated to reduce the bias in the
medoid selection. Finally, each point of the original data set is assigned to the nearest
medoid’s cluster.

Once the performance classes are identified, CERE selects one representative invo-
cation per class. CERE selects the invocation closest to the medoid of the cluster, in
other words, the invocation closely matching the median performance of all the invo-
cations inside the cluster. When replaying the benchmark, CERE extrapolates the full
benchmark performance by weighting each representative replay time according to the
contribution of its performance class in the original execution.

Thanks to invocations reduction, CERE is able to accelerate performance eval-
uation considerably because only a representative subset of the invocations is re-
played: for example, only two out of ten thousand invocations are replayed for codelet
updateTestEv@soplex.c:204 in SPEC 2006 soplex benchmark.

3.8. Codelet Subsetting
A second reduction in the number of replays can be achieved by detecting and ex-
ploiting similar and repeated computation patterns. Benchmark suites and applica-
tions naturally contain redundant computation patterns across different benchmarks.
For instance, two linear algebra solvers, despite using different algorithms, will share
common computation patterns such as vector copy loops, dot product computations, or
matrix vector multiplications.

The method presented in figure 10 detects repeated computation patterns, and keeps
only one representative copy of each, reducing a suite of benchmarks to an essential
set of micro-benchmarks. Because only duplicated patterns are removed, the impor-
tant performance features of the original benchmarks are preserved. The method is
presented in detail in de Oliveira Castro et al. [2014].

Step A statically analyzes and profiles each codelet on an architecture chosen as
a reference. We measure both static and dynamic features. Static features are ex-
tracted by the MAQAO code quality analyzer [Djoudi et al. 2005; Kashnikov et al.
2013] which provides detailed low-level performance metrics. Dynamic features are
provided by Likwid 3.0 [Treibig et al. 2010] which reads the hardware performance
counters. Each codelet is tagged with a feature vector that gathers MAQAO and Lik-

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:16 P. de Oliveira Castro et al.

Maqao

Likwid

Static & Dynamic
Profiling

Vectorization ratio

FLOPS/s

Cache Misses

...[] Clustering

f1
f2
f3
...

Step A: Perform static and dynamic analysis on a reference

architecture to capture codelet's feature vectors.

BT

SP

Step B: Using the proximity between feature

vectors we cluster similar codelets and select one

representative per cluster.

Step C: CERE extracts the

representatives as standalone

codelets. A model extrapolates full

benchmark results.

Model

Sandy Bridge

Atom

Core2

Full

Benchmarks

Results

Fig. 10: Overview of the benchmark reduction method for execution time prediction.
The reduction method can be extended to support compiler or optimization evaluation.

wid measurements. The feature vector is used as a performance signature to detect
similar codelets.

Step B groups codelets sharing similar feature vectors into clusters.
Step C selects a representative for each cluster and extracts it as a standalone

CERE codelet.
Codelets from the same cluster share the same features and should react in the

same way to architecture or compiler changes. For example, memory-bound codelets
will benefit from faster caches, whereas highly vectorized codelets will benefit from
wider vectors. Therefore, by measuring a single representative per cluster we can ex-
trapolate the performance of all its siblings. Given an initial benchmark suite, our
method produces a set of reduced benchmarks that can be used in place of the original
one for system selection. This method is evaluated in section 4.2.

4. EVALUATION OF CERE
In section 4.1, we evaluate CERE capture coverage and replay accuracy on the NAS
3.0 serial benchmarks and the SPEC 2006 FP benchmarks. All the benchmarks in
both test-suites are used in our evaluation, therefore CERE was tested on twenty-six
different benchmarks in total. NAS benchmarks were tested on class A and B data
sets. SPEC benchmarks were tested on ref data sets.

In section 4.2, we demonstrate how CERE can be used to significantly accelerate
the benchmarking process during system selection. To achieve this, we replicate the
experiments presented in [de Oliveira Castro et al. 2014] using CERE.

The experiments were performed on the machines described in table II. They belong
to six different Intel CPU generations (Atom, Core 2 Duo, Nehalem, Sandy Bridge, Ivy
Bridge, and Haswell) and possess quite distinct memory hierarchies. These machines
were selected to validate that CERE replay process is portable across architectures.

We compared the replay times of the NAS codelets with memory captures done on
Core 2 and Haswell and observed no difference. We conclude that the architecture

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:17

Atom Core 2 Nehalem Sandy Bridge Ivy Bridge Haswell

CPU D510 E7500 L5609 E31240 i7-3770 i7-4770
Frequency (GHz) 1.66 2.93 1.86 3.30 3.40 3.40
Cores 2 2 4 4 4 4
L1 cache (KB) 2×56 2×64 4×64 4×64 4×64 4×64
L2 cache (KB) 2×512 3 MB 4×256 4×256 4×256 4×256
L3 cache (MB) - - 12 8 8 8
Ram (GB) 4 4 8 6 16 16

Table II: Test architectures.

used for capturing the memory has no significant impact on replay accuracy. Yet for
completeness, the reader should note that the final memory capture dumps used in the
following experiments were performed on the Core 2 machine for the NAS benchmarks
and on Haswell for the SPEC benchmarks.

The experiments were performed with CERE v0.1.0. C and C++ benchmarks were
compiled with Clang 3.3 and Fortran benchmarks were compiled with GCC 4.6 through
dragonegg.

4.1. Coverage and Replay Accuracy
As discussed in section 3.2, we consider that a codelet is accurately replayed if its
replay performance is within 15% of the original execution time.

Performance is measured using the Time Stamp Counter which provides a precision
around 200 cycles. To ensure that the error upper bound due to measurement noise
remains approximately 10% for all codelets, we removed codelets whose execution time
was less than 2000 cycles per invocation.

Figure 11 shows for the NAS and SPEC 2006 FP benchmarks the percentage of
execution time captured by codelets and the percentage of execution time that could
be accurately replayed. On average, the extracted codelets cover 97.3% of the execution
time in NAS and 76.6% in SPEC.

On NAS, both coverage and replay accuracy are very high. MG matching is a bit
lower (65.1%) than the other benchmarks because of two borderline codelets with re-
play errors at 16.8% and 18.5%. With a tolerated error of 20%, we would have reached
95% coverage.

NAS codelets were replayed in two different architectures to show that CERE re-
liably supports multiple architectures. The small differences in coverage between
Haswell and Core 2 are due to the changes in contribution of codelets to the execution
time, for example CG spends relatively more time on I/Os on Haswell architecture.

SPEC FP results are evaluated on the Haswell architecture. Eleven out of eighteen
benchmarks have high coverage and replay accuracy, over 75%. Here is a list of the
problems affecting the seven remaining benchmarks:

sphinx3, wrf, povray, and calculix have low coverage because most of the time is
spent in I/O operations. The current version of CERE does not capture codelets per-
forming I/O because the dump does not preserve file descriptors state. However 100%
of captured codelets match.

gamess and dealII have low coverage because most of the performance is spent in
loops taking less than 2000 cycles, which were not considered.

gamess has low matching because the only remaining codelet, covering 40% of the
execution time, is not accurately replayed. It is due to a warmup bug which is being
investigated.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:18 P. de Oliveira Castro et al.

Core2 Haswell

0

25

50

75

100

N
A

S
.A

lu cg m
g sp ft bt is ep lu cg m

g sp ft bt is ep

%
 o

f
E

xe
c
.
T

im
e

accurate replay codelet coverage

Haswell

0

25

50

75

100

S
P

E
C

F
P

0
6

ga
m

es
s

sp
hi
nx

3

de
al
II

w
rf

po
vr

ay

ca
lc
ul
ix

so
pl
ex

le
sl
ie
3d

to
nt

o

gr
om

ac
s

ze
us

m
p

lb
m

m
ilc

ca
ct
us

AD
M

na
m

d

bw
av

es

ge
m

sf
dt

d

sp
ec

ra
nd

%
 o

f
E

xe
c
.

T
im

e

Fig. 11: Evaluation of CERE on NAS and SPEC FP 2006. The Coverage is the percent-
age of the execution time captured by codelets. The Accurate Replay is the percentage
of execution time replayed with an error less than 15%.

calculix has low matching because of a borderline codelet isortii which has a replay
error of 16% but accounts for 10% of the running time. It is a sort function which is very
sensitive to warmup effects.

soplex has low matching because CERE fails, due to a capture bug, to replay its
main codelet covering 47.4% of the execution time.

Figure 12 shows that the reinlining and NoAlias-tagging performed during the re-
play compilation pass are beneficial in 11 benchmarks. Overall CERE coverage and
accuracy are high in both NAS and SPEC benchmarks, showing that CERE codelets
can be efficiently used as performance proxies for many applications.

CERE has higher replay accuracy than the state of the art code isolator tool, Codelet
Finder. On NAS, Codelet Finder accurately replays 69% [Akel et al. 2013] of the execu-
tion time, whereas CERE replays 90.9%. On SPEC, Codelet Finder has very low replay
accuracy or fails to extract codelets for many benchmarks (the 2013 version of Codelet
Finder hangs on gamess, gromacs, cactus, calculix, tonto, specrand, and wrf), whereas
CERE accurately replays 66.3% of the SPEC execution time.

CERE includes a report generator that automatically captures the execution traces,
selects representative invocations and computes coverage and replay accuracy of a
given set of benchmarks. The reports can be visualized in any modern web browser.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:19

NAS.A SPECFP06

0

25

50

75

100

H
a
s
w

e
ll

lu cg m
g sp ft bt is ep

ga
m

es
s

sp
hi
nx

3

de
al
II

w
rf

po
vr

ay

ca
lc
ul
ix

so
pl
ex

le
sl
ie
3d

to
nt

o

gr
om

ac
s

ze
us

m
p

lb
m

m
ilc

ca
ct
us

AD
M
na

m
d

bw
av

es

ge
m

sf
dt

d

sp
ec

ra
nd

%
 o

f
E

xe
c
.
T

im
e

base reinlining reinlining+noalias

Fig. 12: Percentage of execution time accurately replayed (error < 15%) on the NAS
and SPEC FP benchmarks with different replay configurations. Reinlining and explic-
itly marking cloned variables as NoAlias improve replay accuracy in eleven bench-
marks.

The user clicks on any captured codelet in the call graph to see its invocation clustering
and replay accuracy statistics. The reports for all NAS and SPECG benchmarks can
be viewed at http://benchmark-subsetting.github.io/cere/.

4.2. Benchmark Reduction Use Case
Codelets can be used as fast performance regression test-suites for compilers in a con-
tinuous integration process. They could also be used as reduced benchmarks for per-
formance studies when testing multiple architectures. Selecting the best computing
system for a set of applications is a costly process which requires benchmarking the
applications on the different systems. We propose to reduce the benchmarking cost by
extracting a set of representative CERE codelets capturing the performance charac-
teristics of the original applications.

We applied the codelet subsetting presented in section 3.8 to the NAS.B codelets.
By clustering similar codelets, eighteen representative codelets were selected and ex-
tracted using CERE. Then they were replayed in three different architectures: Atom,
Core 2, and Sandy Bridge (see table II). This experiment replicates with CERE a sim-
ilar study [de Oliveira Castro et al. 2014] that used Codelet Finder instead.

Figure 13 compares the speedup computed using CERE replays to the real speedup
measured by running the full benchmark suite. The performance predictions are very
close, but CERE replays are 7.3× to 46.6× cheaper than running the full benchmarks.

Table III details the benchmark reduction cost achieved by only replaying the se-
lected representative codelets. We observe that the Working Set warmup is much faster
than the Page Trace warmup that has the overhead of replaying the memory access
history. In this particular experiment, the prediction is the same for both warmup
techniques, therefore we recommend to use Working Set warmup which is much faster.
The benchmark cost reduction and prediction accuracy are comparable to the results
achieved using Codelet Finder codelets [de Oliveira Castro et al. 2014].

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:20 P. de Oliveira Castro et al.

0.12 0.15

0.83 0.83

1.55 1.59

0.0

0.5

1.0

1.5

Atom Core 2 Sandy Bridge

G
e
o
m

e
tr

ic
m

e
a
n
 s

p
e
e
d
u
p

Real Speedup

Predicted Speedup

Fig. 13: NAS geometric mean speedup on three architectures. Baseline is a NAS run
on Nehalem compiled with icc 12.1.0 -O3 -xsse4.2. The predicted speedup is com-
puted by using the replay performance of eighteen CERE representative codelets using
Working Set warmup.

CERE Codelet Finder
Warmup mode Working Set Page Trace Working Set
Core 2 × 30.5 × 9.9 × 24.7
Atom × 46.6 × 10.7 × 44.3
Sandy Bridge × 18.3 × 7.3 × 22.5

Table III: Benchmarking acceleration by replaying only the representatives. CERE re-
plays are 7.3× to 46.6× faster than running the whole NAS.B suite. CERE bench-
mark acceleration is comparable to the results achieved with Codelet Finder by
de Oliveira Castro et al. [2014].

4.3. Compiler Tuning Use Case
On the previous section we showed CERE fast architecture evaluation through bench-
mark reduction. Yet CERE is not limited to architecture benchmarking, it can also be
used for quick compiler auto-tuning. We showcase CERE auto-tuning capabilities in
a Reverse Time Migration (RTM) [Baysal 1983] proto-application used in geophysical
depth imaging application. The proto-application used here was kindly provided by
Asma Farjallah and developed through a collaboration between Total and the Uni-
versity of Versailles Saint-Quentin-en-Yvelines, it implements the finite-difference
time-domain (FDTD) step used to solve the wave propagation equation in an isotropic
medium. A full description and characterization of the FDTD proto-application is pro-
vided by de Oliveira Castro et al. [2013].

The FDTD proto-application is dominated by one Jacobi stencil computation that
represents 91.1% of the total running time. In the original application it is called
3 000 000 times. CERE is able to extract the Jacobi stencil codelet. The experiments
in this section were performed on Ivy Bridge.

Table IV compares the predicted replay execution times using the three warmup
techniques. This codelet is sensible to warmup: Cold warmup and Working Set warmup
are not highly accurate because the replays over and under-estimate memory access
costs. In this case, the more realistic Page Trace warmup gives the more accurate re-

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:21

Original Page Trace Working Set Cold
Execution time (e+11 cycles) 2.34 2.40 2.08 3.13
Prediction error (%) - 2.56 11.45 25.16

Table IV: CERE predicted execution times of the FDTD codelet compiled with -O2
using the three warmup techniques.

Original (e+11 cycles) Replay (e+11 cycles) Prediction error (%)
-O0 2.78 2.88 3.54
-O1 2.33 2.38 2.12
-O2 2.34 2.40 2.25
-O3 2.32 2.42 4.13

Table V: CERE performance predictions for different Clang optimization levels on the
FDTD codelet.

sults. For this reason, the following experiments were all performed using Page Trace
warmup.

Not only is CERE replay accurate, but it is also much faster than running the orig-
inal program. Thanks to the invocation selection algorithm presented in section 3.7,
CERE is able to accurately capture the original 3 000 000 invocations behavior us-
ing only two representative captures. After accounting for the replay overhead due to
warmup and performing four meta-repetition for accuracy, the replay only takes 0.3
seconds. Compared to the original proto-application run time, 71.1 seconds, the replay
is 237 times cheaper.

CERE quick replay performance evaluation makes accessible costly techniques such
as iterative compilation or compiler auto-tuning. As a preliminary experiment to
demonstrate CERE applicability to compiler auto-tuning, we show that it accurately
captures the performance when exploring the Clang default optimization levels. Ta-
ble V summarizes our results. We see there is a significant performance improvement
between the -O0 and -O1 optimization levels. This performance jump is accurately
captured by CERE replays. This opens the opportunity for larger auto-tuning experi-
ment [Kashnikov et al. 2012].

CERE fast replay could also be used to evaluate changes in performance across
LLVM compiler versions. The idea is that a codelet captured in LLVM 3.3, can be
replayed with a later version of the compiler. Currently in CERE, for this to work the
IR must be compatible between the capture and replay LLVM versions. Backwards
compatibility of the IR is generally possible between minor LLVM version, but not a
strong guarantee of the LLVM project. We captured the FDTD codelet using LLVM 3.3
and replayed it using both LLVM 3.3 and LLVM 3.4. Table VI shows that CERE re-
play accurately predicts the real execution times achieved when compiling the FDTD
proto-application with the two compiler versions.

CERE codelets offer an alternative to the traditional benchmarks or hand crafted
micro-benchmarks. It allows to generate small and fast representative performance
test cases.

5. COMPARISON TO RELATED WORK
Our work builds upon two different lines of research: code isolation and sampled sim-
ulation of programs. Both share the same objective: accelerating performance evalu-
ation of programs. Code isolation extracts pieces of a program as standalone codelets

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:22 P. de Oliveira Castro et al.

Original (e+11 cycles) Replay (e+11 cycles) Prediction error (%)
LLVM 3.3 2.34 2.40 2.25
LLVM 3.4 2.03 1.92 5.23

Table VI: Evaluation of 3.3 and 3.4 LLVM versions on the FDTD codelet using -O2.

whereas sampled simulation uses a hardware simulator to replay a small set of repre-
sentatives phases in a program.

A first set of papers [Lee and Hall 2005; Petit et al. 2006; Liao et al. 2010; Akel et al.
2013] study code isolation. Lee and Hall [2005] introduce the concept of code isolation
for debugging and iterative performance tuning. Their tool, Code Isolator, leverages
the Stanford SUIF compiler to outline and generate codelets. They use Code Isolator
on a finite element application, LS-DYNA, to quickly evaluate the L1 cache misses of
the hotspots. Petit et al. [2006] and Liao et al. [2010] use code isolation for automatic
kernel tuning and specialization. The tool developed by Petit and Bodin [2010], Astex,
uses code isolation to accelerate and facilitate value profiling and code specialization
for speculative execution. Akel et al. [2013] evaluate the Codelet Finder tool, developed
by Caps Entreprises [CAPS 2013] and study under which conditions codelets preserve
the performance characteristics of the original programs.

Sampled simulation identifies and clusters similar program phases to reduce simu-
lation time. Lafage and Seznec [2001] propose a method to find slices of a program that
are representative for data cache simulation. It uses hierarchical clustering on two
metrics: memory spatial locality and memory temporal locality. SimPoint [Sherwood
et al. 2001; Sherwood et al. 2002] identifies similar program phases by comparing Ba-
sic Block Vectors (BBV). Phases are samples of 100M instructions. Simpoint reduces
simulation time by removing repeated phases. BBV are program dependent, therefore
SimPoint cannot use representatives of one program to predict another. Eeckhout et al.
[2005] extend SimPoint by matching inter-application phases using microarchitecture-
independent features. SimPoint and its extensions are similar to our work in that they
extract representative phases from an application. But SimPoint must be used in a
simulator, whereas our method is more versatile since the IR codelets can be recom-
piled and retargeted and run both on simulators and on real hardware.

Breughe and Eeckhout [2013] propose multiple techniques to choose representative
working sets for microprocessor design space exploration. CERE achieves a similar
goal through invocation representative selection. The difference is that CERE operates
at the codelet level whereas Breughe and Eeckhout [2013] operate at the application
level.

CERE page tracing warmup requires tracing access to memory. Recently Payer et al.
[2013] present a very low overhead memory tracing technique, which could be lever-
aged in CERE to reduce the capture cost. Unfortunately, the technique is only applica-
ble to 32 bit binaries.

Table VII compares the features of the main code isolation tools on multiple criteria.
First we compare the supported input languages, the isolation level and the support
of indirect memory accesses. Second we consider if the tool allows replay on real hard-
ware or is tied to a simulator. Finally, we examine whether the tool attempts to reduce
the capture size, the number of working sets, or the number of representative codelets.

6. CONCLUSION
In this paper we present CERE, an LLVM based Codelet Extractor and Replay frame-
work. CERE finds and extracts the hotspots of an application as codelets. Codelets can
be modified, compiled, run, and measured independently from the original applica-

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:23

CERE Code Isolator Astex Codelet Finder SimPoint

Support
Language C(++), Fortran, ... Fortran C, Fortran C(++), Fortran assembly

Extraction IR source source source assembly
Indirections yes no no yes yes

Replay
Simulator yes yes yes yes yes
Hardware yes yes yes yes no

Reduction
Capture size reduced reduced reduced full -
Working set yes manual manual manual yes

Codelet yes no no no yes

Table VII: Feature comparison of code isolation tools.

tion. Code isolation reduces benchmarking cost and allows piecewise optimization. We
demonstrate two interesting trade-offs, one about using IR level extraction, one using
page granularity memory capture. Results demonstrate the validity, the portability,
and the applicability of our solution.

While limiting the benchmark and working set size, our codelet model authorize
better optimization iteration for the user or auto-tuning tools. Furthermore, as a lot
of effort has been put on the software reliability, CERE is a useful basis to build new
codelet applications. We are currently exploring, PCERE [Popov et al. 2015], a parallel
extension of CERE that is able to capture and replay OpenMP parallel regions.

CERE will be soon released at http://benchmark-subsetting.github.io/cere under an
open source license. Automatically generated reports from our experiments with NAS
and SPEC benchmarks are also available at the above address.

REFERENCES
gperftools v2.2.1. Google Performance Tools. (gperftools v2.2.1). http://code.google.com/p/gperftools
Chadi Akel, Yuriy Kashnikov, Pablo de Oliveira Castro, and William Jalby. 2013. Is Source-code Isolation

Viable for Performance Characterization?. In Parallel Processing Workshops (ICPPW), 2013 42nd Inter-
national Conference on. IEEE.

A. Alexandrescu. 2010. The D Programming Language. Pearson Education.
David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter, Leonardo Dagum, Rod A

Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S Schreiber, and others. 1991. The NAS parallel
benchmarks summary and preliminary results. In Supercomputing, 1991. Supercomputing’91. Proceed-
ings of the 1991 ACM/IEEE Conference on. IEEE, 158–165.

Edip Baysal. 1983. Reverse time migration. Geophysics 48, 11 (Nov. 1983), 1514.
DOI:http://dx.doi.org/10.1190/1.1441434

Maximilien B Breughe and Lieven Eeckhout. 2013. Selecting representative benchmark inputs for exploring
microprocessor design spaces. ACM Transactions on Architecture and Code Optimization (TACO) 10, 4
(2013), 37.

Ariel N Burton and Paul HJ Kelly. 2006. Performance prediction of paging workloads using lightweight
tracing. Future Generation Computer Systems 22, 7 (2006), 784–793.

Brad Calder, Peter Feller, and Alan Eustace. 1997. Value profiling. In Microarchitecture, 1997. Proceedings.,
Thirtieth Annual IEEE/ACM International Symposium on. IEEE, 259–269.

CAPS. 2013. Codelet Finder. (2013). http://www.caps-entreprise.com/
John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla, Michael FP O’Boyle, Grigori Fursin, and

Olivier Temam. 2006. Automatic performance model construction for the fast software exploration of
new hardware designs. In Proceedings of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems. ACM, 24–34.

Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam, and Chengy-
ong Wu. 2010. Evaluating Iterative Optimization Across 1000 Data Sets. In Proceedings of the ACM

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

1:24 P. de Oliveira Castro et al.

SIGPLAN 2010 Conference on Programming Language Design and Implementation (PLDI’10). Toronto,
Canada.

Thomas M Conte, Mary Ann Hirsch, and Kishore N Menezes. 1996. Reducing state loss for effective trace
sampling of superscalar processors. In Computer Design: VLSI in Computers and Processors, 1996.
ICCD’96. Proceedings., 1996 IEEE International Conference on. IEEE, 468–477.

Pablo de Oliveira Castro, Yuriy Kashnikov, Chadi Akel, Mihail Popov, and William Jalby. 2014. Fine-grained
Benchmark Subsetting for System Selection. In Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization. ACM, 132.

Pablo de Oliveira Castro, Eric Petit, Asma Farjallah, and William Jalby. 2013. Adaptive Sampling for Perfor-
mance Characterization of Application Kernels. Concurrency and Computation: Practice and Experience
(2013). DOI:http://dx.doi.org/10.1002/cpe.3097

Lamia Djoudi, Denis Barthou, Patrick Carribault, Christophe Lemuet, Jean-Thomas Acquaviva, and
William Jalby. 2005. Maqao: Modular assembler quality analyzer and optimizer for itanium 2. In The
4th Workshop on EPIC architectures and compiler technology, San Jose.

Jason Duell. 2005. The design and implementation of Berkeley lab’s linux checkpoint/restart. Lawrence
Berkeley National Laboratory (2005).

Lieven Eeckhout, John Sampson, and Brad Calder. 2005. Exploiting program microarchitecture indepen-
dent characteristics and phase behavior for reduced benchmark suite simulation. In Workload Charac-
terization Symposium, 2005. Proceedings of the IEEE International. IEEE, 2–12.

Xiaofeng Gao, Michael Laurenzano, Beth Simon, and Allan Snavely. 2005. Reducing overheads for acquir-
ing dynamic memory traces. In Workload Characterization Symposium, 2005. Proceedings of the IEEE
International. IEEE, 46–55.

Christopher Haine, Olivier Aumage, Enguerrand Petit, and Denis Barthou. (to appear) 2014. Exploring and
Evaluating Array Layout Restructuration for SIMDization. In Proceedings of the international confer-
ence on Languages and Compilers for Parallel Computing (LCPC’14).

John W Haskins Jr and Kevin Skadron. 2003. Memory reference reuse latency: Accelerated warmup for
sampled microarchitecture simulation. In Performance Analysis of Systems and Software, 2003. IS-
PASS. 2003 IEEE International Symposium on. IEEE, 195–203.

John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture
News 34, 4 (2006), 1–17.

Sunpyo Hong and Hyesoon Kim. 2010. An integrated GPU power and performance model. In ACM
SIGARCH Computer Architecture News, Vol. 38. ACM, 280–289.

Kenneth Hoste and Lieven Eeckhout. 2006. Comparing benchmarks using key microarchitecture-
independent characteristics. In Workload Characterization, 2006 IEEE International Symposium on.
IEEE, 83–92.

Kenneth Hoste and Lieven Eeckhout. 2007. Microarchitecture-independent workload characterization. Mi-
cro, IEEE 27, 3 (2007), 63–72.

Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K John, and Koen De Boss-
chere. 2006. Performance prediction based on inherent program similarity. In Proceedings of the 15th
international conference on Parallel architectures and compilation techniques. ACM, 114–122.

Yuriy Kashnikov, Jean Christophe Beyler, and William Jalby. 2012. Compiler optimizations: Machine Learn-
ing versus O3. In Proceedings of the international conference on Languages and Compilers for Parallel
Computing (LCPC’12). Tokyo, Japan.

Yuriy Kashnikov, Pablo de Oliveira Castro, Emmanuel Oseret, and William Jalby. 2013. Evaluating architec-
ture and compiler design through static loop analysis. In High Performance Computing and Simulation
(HPCS), 2013 International Conference on. IEEE, 535–544.

Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an introduction to cluster analysis.
Vol. 344. John Wiley & Sons.

Richard E. Kessler, Mark D Hill, and David A Wood. 1994. A comparison of trace-sampling techniques for
multi-megabyte caches. Computers, IEEE Transactions on 43, 6 (1994), 664–675.

Minhaj Ahmad Khan, H-P Charles, and Denis Barthou. 2008. An effective automated approach to special-
ization of code. In Proceeding of the internation conference on Languages and Compilers for Parallel
Computing. Springer, 308–322.

Donald E Knuth. 1971. An empirical study of Fortran programs. Software: Practice and Experience 1, 2
(1971), 105–133.

Thierry Lafage and André Seznec. 2001. Choosing representative slices of program execution for microar-
chitecture simulations: A preliminary application to the data stream. In Workload characterization of
emerging computer applications. Springer, 145–163.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

CERE: LLVM based Codelet Extractor and REplayer 1:25

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis &
transformation. In Code Generation and Optimization, 2004. CGO 2004. International Symposium on.
IEEE, 75–86.

Yoon-Ju Lee and Mary Hall. 2005. A code isolator: Isolating code fragments from large programs. In Lan-
guages and Compilers for High Performance Computing. Springer, 164–178.

Chunhua Liao, Daniel J Quinlan, Richard Vuduc, and Thomas Panas. 2010. Effective source-to-source out-
lining to support whole program empirical optimization. In Proceedings of the international conference
on Languages and Compilers for Parallel Computing. Springer, 308–322.

Gabriel Marin and John Mellor-Crummey. 2004. Cross-architecture performance predictions for scien-
tific applications using parameterized models. In ACM SIGMETRICS Performance Evaluation Review,
Vol. 32. ACM, 2–13.

Dmitry Mikushin, Nikolay Likhogrud, Eddy Zheng Zhang, and Christopher Bergström. 2013. KernelGen–
the design and implementation of a next generation compiler platform for accelerating numerical models
on GPUs. Technical Report. Technical Report 2013/02, University of Lugano, July 2013. http://www. old.
inf. usi. ch/file/pub/75/tech report2013. pdf.

Zhelong Pan and Rudolf Eigenmann. 2006. Fast, automatic, procedure-level performance tuning. In Pro-
ceedings of the 15th international conference on Parallel architectures and compilation techniques. ACM,
173–181.

Mathias Payer, Enrico Kravina, and Thomas R Gross. 2013. Lightweight Memory Tracing.. In USENIX
Annual Technical Conference. 115–126.

Eric Petit and François Bodin. 2010. Code-Partitioning for a Concise Characterization of Programs for De-
coupled Code Tuning. (March 2010). http://hal.archives-ouvertes.fr/hal-00460897

Eric Petit, Pablo de Oliveira Castro, Tarek Menour, Bettina Krammer, and William Jalby. 2012. Computing-
Kernels Performance Prediction Using DataFlow Analysis and Microbenchmarking. In Proceedings of
Compilers for Parallel Computers (CPC2012).

Eric Petit, Guillaume Papaure, and François Bodin. 2006. Astex: a hot path based thread extractor for
distributed memory system on a chip. In Proceedings of Compilers for Parallel Computers (CPC2006).

Aashish Phansalkar, Ajay Joshi, and Lizy K John. 2007. Analysis of redundancy and application balance in
the SPEC CPU2006 benchmark suite. In ACM SIGARCH Computer Architecture News, Vol. 35. ACM,
412–423.

Mihail Popov, Chadi Akel, Florent Conti, William Jalby, and Pablo de Oliveira Castro. 2015. PCERE: Fine-
grained Parallel Benchmark Decomposition for Scalability Prediction. In Proceedings of the 29th IEEE
International Parallel and Distributed Processing Symposium IPDPS 2015 (to appear). IEEE.

D Sands. 2009. Reimplementing llvm-gcc as a gcc plugin. In Third Annual LLVM Developers Meeting.
Timothy Sherwood, Erez Perelman, and Brad Calder. 2001. Basic block distribution analysis to find periodic

behavior and simulation points in applications. In Parallel Architectures and Compilation Techniques,
2001. Proceedings. 2001 International Conference on. IEEE, 3–14.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automatically characterizing
large scale program behavior. In ACM SIGARCH Computer Architecture News, Vol. 30. ACM, 45–57.

Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. Likwid: A lightweight performance-oriented tool suite
for x86 multicore environments. In Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on. IEEE, 207–216.

Received ; revised ; accepted

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 1, Publication date: April 2015.

