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Context

I Architecture, system, and application complexities increase

I System provides default good enough parameter
configurations

I Compiler optimizations: -O2, -O3
I Thread affinity: scatter

I Outperforming default parameters leads to substantial benefits
but is a costly process

I Execution driven studies test different configurations
I Applications have redundancies
I Executing an application is time consuming
I The search space is huge
I Studies reduce the exploration cost by smartly navigating

through the search space
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Piecewise Exploration

I Codelet Extractor and REplayer (CERE) decomposes
applications into small pieces called Codelets

I Each codelet maps a loop or a parallel region and is a
standalone executable

I Extract codelets once

I Replay codelets instead of applications with different
configurations to avoid redundancies
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IS Motivating Example

int main()
{
create_seq()
for(i=0;i<11;i++)
  rank()   
}

I IS benchmark
I IS create seq covers 40% of the execution time
I IS rank sorting algorithm performs 11 invocations with the

same execution time

I Piecewise exploration benefits
I Avoid create seq execution
I Evaluate a single invocation of rank
I IS rank and create seq are not sensitive to the same

optimizations
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Outline

Codelet Extractor and Replayer (CERE)

Prediction Model

Thread and Compiler Tuning
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CERE Workflow
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CERE can extract codelets from:

I Hot Loops

I OpenMP non-nested parallel regions
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Codelet Capture and Replay

I Codelets are extracted at the LLVM Intermediate
Representation level

I The user can recompile each codelet and replay it while
changing compile options, runtime parameters, or the target
system

I Performance accurate replay requires to capture the cache
state

I Semantically accurate replay requires to capture the memory
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Memory Page Capture

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory 

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return 
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

I Capture access at page granularity: coarse but fast

I Small dump footprint: only touched pages are saved
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Cache State Capture

I Cold
I Do not capture cache effects

I Working Set
I Warms all the working set during replay (Optimistic)

I Page Trace
I Before replay warms the last N pages accessed to restore a

cache state close to the original
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CERE Cache Warmup

for (i=0; i < size; i++) 
     a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO 
(most recently unprotected)

warmup page trace
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OpenMP Regions Support

void main()
{
  #pragma omp parallel   
  {    
    int p = omp_get_thread_num();
    printf("%d",p);
  }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
    %p = alloca i32, align 4
    %call = call i32 @omp_get_thread_num()
    store i32 %call, i32* %p, align 4
    %1 = load i32* %p, align 4
    call @printf(%1)
}

LLVM simplified IR Thread execution model
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Selecting Representative Invocations

I A region can have thousand of invocations
I Performance differs due to different working sets
I Cluster to select representative invocations
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Figure: SPEC tonto make ft@shell2.F90:1133 execution trace. 90%
of NAS codelets can be reduced to four or less representatives.
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Performance Classes Across Parameters
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I ”MG resid” invocations execution time

I Use three invocations to predict the application execution time

I Parameters do not change the performance classes
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NUMA Aware Warmup

I First touch policy: threads allocate the pages that they are
the first to touch on their NUMA domain

I Detect the first thread that touches the memory pages

I During warmup the recorded NUMA-domains are restored

1 NUMA domain (compact) 2 NUMA domains (scatter)
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Figure: ”BT xsolve” replay
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Test Architectures and Applications

I NAS SER and NPB OpenMP 3.0 C version CLASS A

I Blackscholes from the PARSEC benchmarks

I Reverse Time Migration (RTM) proto-application

I Compiler LLVM 3.4

Sandy Bridge Ivy Bridge

CPU E5 i7-3770
Frequency (GHz) 2.7 3.4
Sockets 2 1
Cores per socket 8 4
Threads per core 2 2
L1 cache (KB) 32 32
L2 cache (KB) 256 256
L3 cache (MB) 20 8
Ram (GB) 64 16

Figure: Test architectures
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Blackscholes Thread Affinities Exploration

I Different thread affinities to evaluate
I sn: n scatter threads
I cn: n compact threads without hyper threading
I hn: n compact threads with hyper threading
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Figure: PARSEC Blackscholes thread configurations search
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Outperforming Default Thread Configuration

hyperthread.h32 compact.c8
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Figure: NAS thread configurations tuning
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Autotuning LLVM Middle End Optimizations

I LLVM middle end offers more than 50 optimization passes
I Codelet replay enable per-region fast optimization tuning

Id of LLVM middle−end optimization passes combination
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Figure: ”SP ysolve” codelet. 1000 schedules of random passes
combinations explored based on O3 passes.

CERE 149× cheaper than running the full benchmark
( 27× cheaper when tuning codelets covering 75% of SP) 17 / 23



Hybridization
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Hybrid Compilation over the NAS

I Four parallel regions of SP cover 93% of the execution time

I No single sequence is the best for all the regions

I Codelets explore parameters for each region separately

I Produce an hybrid where each region is compiled using its
best sequence
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Figure: Hybrid compilation speeds up SP OpenMP 1.06×
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Piecewise Exploration Benefits
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Codelets Tuning Results

Compiler passes Thread affinity
#Regions Accuracy Acceleration #Regions Accuracy Acceleration

BT 3 98.73 79.63 4 95.24 5.28
CG 2 98.65 3.39 2 79.48 1.23
FT 5 98.3 2.6 5 90.71 2.17
IS 3 96.64 1.26 2 94.85 1.04
SP 6 98.78 68.9 4 97.66 20.07
LU 7 95.04 8.49 2 99.00 12.64
EP 1 83.08 0.36 1 99.31 0.25
MG 4 97.22 0.28 4 93.04 0.45

AVG 95.8 20.61 93.66 5.39

I NAS SER and OpenMP benchmarks average speedup of
1.08×

I Tuning a single codelet is 13× faster than full applications
I Codelet average accuracy is 94.6%
I RTM tuning through a codelet is 200× faster and achieves a

speedup of 1.11×
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Conclusion

I Piecewise tuning with codelets
I Accelerate the exploration process
I Improve the benefits

I Discussion
I Some regions are not independent: LU jacu and jacld
I Piecewise tuning sensitivity to the data set

I Future Work
I Combine codelets tuning with GA
I Use a clustering approach over codelets
I Improve the parallel warmup strategy

I https://benchmark-subsetting.github.io/cere/
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