
Piecewise Holistic Autotuning of Compiler and
Runtime Parameters

Mihail Popov, Chadi Akel, William Jalby, Pablo de Oliveira
Castro

University of Versailles – Exascale Computing Research

August 2016

C E R E

Context

I Architecture, system, and application complexities increase

I System provides default good enough parameter
configurations

I Compiler optimizations: -O2, -O3
I Thread affinity: scatter

I Outperforming default parameters leads to substantial benefits
but is a costly process

I Execution driven studies test different configurations
I Applications have redundancies
I Executing an application is time consuming
I The search space is huge
I Studies reduce the exploration cost by smartly navigating

through the search space

1 / 23

Piecewise Exploration

I Codelet Extractor and REplayer (CERE) decomposes
applications into small pieces called Codelets

I Each codelet maps a loop or a parallel region and is a
standalone executable

I Extract codelets once

I Replay codelets instead of applications with different
configurations to avoid redundancies

2 / 23

IS Motivating Example

int main()
{
create_seq()
for(i=0;i<11;i++)
 rank()
}

I IS benchmark
I IS create seq covers 40% of the execution time
I IS rank sorting algorithm performs 11 invocations with the

same execution time

I Piecewise exploration benefits
I Avoid create seq execution
I Evaluate a single invocation of rank
I IS rank and create seq are not sensitive to the same

optimizations

3 / 23

Outline

Codelet Extractor and Replayer (CERE)

Prediction Model

Thread and Compiler Tuning

4 / 23

CERE Workflow

Applications
LLVM IR Region

outlining

Region
Capture

Fast
performance

prediction

Retarget for:
 different architectures
 different optimizations

Change: number of threads, affinity,
runtime parameters

Warmup
+

Replay

Working set
and cache

capture

Generate
codelets
wrapper

Working sets
memory dump

Codelet
Replay

Invocation
&

Codelet
subsetting

CERE can extract codelets from:

I Hot Loops

I OpenMP non-nested parallel regions

5 / 23

Codelet Capture and Replay

I Codelets are extracted at the LLVM Intermediate
Representation level

I The user can recompile each codelet and replay it while
changing compile options, runtime parameters, or the target
system

I Performance accurate replay requires to capture the cache
state

I Semantically accurate replay requires to capture the memory

6 / 23

Memory Page Capture

region
to capture

protect static and currently allocated
process memory (/proc/self/maps)

intercept memory allocation functions
with LD_PRELOAD

1 allocate memory

2 protect memory and return
to user program

segmentation
fault handler

1 dump accessed memory to disk

2 unlock accessed page and return
to user program

a[i]++;

memory
access

a = malloc(256);

memory
allocation

I Capture access at page granularity: coarse but fast

I Small dump footprint: only touched pages are saved

7 / 23

Cache State Capture

I Cold
I Do not capture cache effects

I Working Set
I Warms all the working set during replay (Optimistic)

I Page Trace
I Before replay warms the last N pages accessed to restore a

cache state close to the original

8 / 23

CERE Cache Warmup

for (i=0; i < size; i++)
 a[i] += b[i];

... ...

array a[] pages array b[] pages

21 22 23 50 51 52...

 pages addresses

21 5051 20

46 17 47 18 48 19 49

22

...

Reprotect 20

memory

{ {
FIFO
(most recently unprotected)

warmup page trace

9 / 23

OpenMP Regions Support

void main()
{
 #pragma omp parallel
 {
 int p = omp_get_thread_num();
 printf("%d",p);
 }
}

C code

Clang OpenMP
front end

define i32 @main() {
entry:
...
call @__kmpc_fork_call @.omp_microtask.(...)
...
}

define internal void @.omp_microtask.(...) {
entry:
 %p = alloca i32, align 4
 %call = call i32 @omp_get_thread_num()
 store i32 %call, i32* %p, align 4
 %1 = load i32* %p, align 4
 call @printf(%1)
}

LLVM simplified IR Thread execution model

10 / 23

Selecting Representative Invocations

I A region can have thousand of invocations
I Performance differs due to different working sets
I Cluster to select representative invocations

0e+00

2e+07

4e+07

6e+07

8e+07

0 1000 2000 3000
invocation

C
yc

le
s

replay

Figure: SPEC tonto make ft@shell2.F90:1133 execution trace. 90%
of NAS codelets can be reduced to four or less representatives.

11 / 23

Performance Classes Across Parameters

original trace replay

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

O
0 + 4 threads

O
3 + 2 threads

0 10 20 30 40
invocation

m
eg

ac
yc

le
s

I ”MG resid” invocations execution time

I Use three invocations to predict the application execution time

I Parameters do not change the performance classes

12 / 23

NUMA Aware Warmup

I First touch policy: threads allocate the pages that they are
the first to touch on their NUMA domain

I Detect the first thread that touches the memory pages

I During warmup the recorded NUMA-domains are restored

1 NUMA domain (compact) 2 NUMA domains (scatter)

0e+00

1e+10

2e+10

3e+10

4e+10

2 4 8 16 2 4 8 16 32
thread number

C
yc

le
s

Original Single Thread Warmup NUMA Warmup

Figure: ”BT xsolve” replay

13 / 23

Test Architectures and Applications

I NAS SER and NPB OpenMP 3.0 C version CLASS A

I Blackscholes from the PARSEC benchmarks

I Reverse Time Migration (RTM) proto-application

I Compiler LLVM 3.4

Sandy Bridge Ivy Bridge

CPU E5 i7-3770
Frequency (GHz) 2.7 3.4
Sockets 2 1
Cores per socket 8 4
Threads per core 2 2
L1 cache (KB) 32 32
L2 cache (KB) 256 256
L3 cache (MB) 20 8
Ram (GB) 64 16

Figure: Test architectures

14 / 23

Blackscholes Thread Affinities Exploration

I Different thread affinities to evaluate
I sn: n scatter threads
I cn: n compact threads without hyper threading
I hn: n compact threads with hyper threading

0e+00

1e+07

2e+07

3e+07

1 s2 c2 h2 s4 c4 h4 s8 c8 h8 s16 h16 h32

thread configuration

C
y
c
le

s

Original Replay

Figure: PARSEC Blackscholes thread configurations search

15 / 23

Outperforming Default Thread Configuration

hyperthread.h32 compact.c8

0.0

0.5

1.0

1.5

BT CG EP FT IS LU MG SP BT CG EP FT IS LU MG SP

S
pe

ed
−

up
 o

ve
r

st
an

da
rd

 (
s1

6)

original replay

Figure: NAS thread configurations tuning

16 / 23

Autotuning LLVM Middle End Optimizations

I LLVM middle end offers more than 50 optimization passes
I Codelet replay enable per-region fast optimization tuning

Id of LLVM middle−end optimization passes combination

C
yc

le
s

(I
vy

br
id

ge
 3

.4
G

H
z)

6.0e+07

8.0e+07

1.0e+08

1.2e+08

0 200 400 600

original
replay
O3

Figure: ”SP ysolve” codelet. 1000 schedules of random passes
combinations explored based on O3 passes.

CERE 149× cheaper than running the full benchmark
(27× cheaper when tuning codelets covering 75% of SP) 17 / 23

Hybridization

Application

Hotspots extraction
into codelets

O3

O2
avx

sse
...

Replay codelets with selected
flags to test

avx

sse

sse

avx

Assign to each codelet the flag
that gave the best performance

Application

Extract hotspots into new files

Compile files with their
respective best flag

Hybrid optimized
binary

Flags
selection

Hybridization

18 / 23

Hybrid Compilation over the NAS

I Four parallel regions of SP cover 93% of the execution time

I No single sequence is the best for all the regions

I Codelets explore parameters for each region separately

I Produce an hybrid where each region is compiled using its
best sequence

rhs zsolve xsolve+ysolve total

8.5

9.0

9.5

13

14

15

16

27.5

30.0

32.5

50

55

60

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

hy
br

id O2 O3

rh
s−

be
st

z−
be

st

compiler optimizations

gi
ga

cy
cl

es
 −

 c
om

pa
ct

 8

Figure: Hybrid compilation speeds up SP OpenMP 1.06×

19 / 23

Piecewise Exploration Benefits

0.90

0.95

1.00

1.05

1.10

BT IS SP
Benchmarks

S
pe

ed
up

 o
ve

r
−

O
3

hybrid (original exploration)

hybrid (replay exploration)

monolithic

best standard

BT IS SP

xsolve

ysolve

zsolve

createseq

fullverify

rank

rhs@166

rhs@273

rhs@64

xsolve

ysolve

zsolve

0 1000 2000 3000 0 5 10 0 250 500 750 1000
Compiler optimization sequences

cost of piecewise exploration overhead of monolithic exploration

Figure: Piecewise exploration of the NAS SER

20 / 23

Codelets Tuning Results

Compiler passes Thread affinity
#Regions Accuracy Acceleration #Regions Accuracy Acceleration

BT 3 98.73 79.63 4 95.24 5.28
CG 2 98.65 3.39 2 79.48 1.23
FT 5 98.3 2.6 5 90.71 2.17
IS 3 96.64 1.26 2 94.85 1.04
SP 6 98.78 68.9 4 97.66 20.07
LU 7 95.04 8.49 2 99.00 12.64
EP 1 83.08 0.36 1 99.31 0.25
MG 4 97.22 0.28 4 93.04 0.45

AVG 95.8 20.61 93.66 5.39

I NAS SER and OpenMP benchmarks average speedup of
1.08×

I Tuning a single codelet is 13× faster than full applications
I Codelet average accuracy is 94.6%
I RTM tuning through a codelet is 200× faster and achieves a

speedup of 1.11×
21 / 23

Related Works

I Kulkarni et al. ”Improving Both the Performance Benefits and
Speed of Optimization Phase Sequence Searches” (ACM
Sigplan Notices 2010)

I Fursin et al. ”Quick and practical run-time evaluation of
multiple program optimizations” (HiPEAC 2007)

I Fursin et al. ”Milepost gcc: Machine learning enabled
self-tuning compiler” (Int. J. Parallel Prog. 2011)

I Purini et al. ”Finding good optimization sequences covering
program space” (TACO 2013)

22 / 23

Conclusion

I Piecewise tuning with codelets
I Accelerate the exploration process
I Improve the benefits

I Discussion
I Some regions are not independent: LU jacu and jacld
I Piecewise tuning sensitivity to the data set

I Future Work
I Combine codelets tuning with GA
I Use a clustering approach over codelets
I Improve the parallel warmup strategy

I https://benchmark-subsetting.github.io/cere/

23 / 23

https://benchmark-subsetting.github.io/cere/

	Codelet Extractor and Replayer (CERE)
	Prediction Model
	Thread and Compiler Tuning

