
Fine-grained Benchmark Subsetting for System Selection

Pablo de Oliveira
Castro*†

pablo.oliveira@uvsq.fr

Yuriy Kashnikov†

yuriy.kashnikov@exascale-
computing.eu

Chadi Akel†
chadi.akel@exascale-

computing.eu

Mihail Popov†

mihail.popov@exascale-
computing.eu

William Jalby*†

william.jalby@uvsq.fr

*Université de Versailles Saint-Quentin-en-Yvelines, France
†Exascale Computing Research, France

ABSTRACT

System selection aims at finding the best architecture for a
set of programs and workloads. It traditionally requires long
running benchmarks. We propose a method to reduce the
cost of system selection. We break down benchmarks into
elementary fragments of source code, called codelets. Then,
we identify two causes of redundancy: first, similar codelets;
second, codelets called repeatedly. The key idea is to mini-
mize redundancy inside the benchmark suite to speed it up.
For each group of similar codelets, only one representative
is kept. For codelets called repeatedly and for which the
performance does not vary across calls, the number of in-
vocations is reduced. Given an initial benchmark suite, our
method produces a set of reduced benchmarks that can be
used in place of the original one for system selection.

We evaluate our method on the NAS SER benchmarks,
producing a reduced benchmark suite 30 times faster in av-
erage than the original suite, with a maximum of 44 times.
The reduced suite predicts the execution time on three tar-
get architectures with a median error between 3.9% and 8%.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement Techniques,
Modeling Techniques; B.8.2 [Performance and Reliabil-
ity]: Performance Analysis and Design Aids

General Terms

Performance, Measurement

1. INTRODUCTION
Benchmark suites are used to evaluate both compilers and

architectures. Finding the best architecture and compiler
optimizations for an application is an important problem

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CGO ’14 February 15 - 19 2014, Orlando, FL, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2670-4/14/02 ...$15.00.

for high performance computing, data centers, and embed-
ded computers. Traditionally, before buying a new com-
puting system, performance benchmarks are conducted to
determine the best architecture and compiler options. This
process involves running all the benchmark programs in dif-
ferent system configurations. This paper proposes a method
to lower the cost of benchmarking by extracting a set of rep-
resentative microbenchmarks sufficient to capture the per-
formance characteristics of the original application.

Previous work [14, 23, 5] identifies many similarities among
different programs in the same benchmark suite. We pro-
pose to take advantage of those similarities to reduce the
benchmarking time.

We break down each application into small non-overlapping
fragments of code, called codelets, using CAPS Entreprise’s
Codelet Finder (CF) tool [6, 1]. Our benchmark reduction
method detects and removes redundant codelets. We ad-
dress two sources of redundancy:

• Similar computation kernels: Benchmark suites
share many similar codelets: simple ones, like set-to-
zero or memory copy loops, and more complex ones,
like Single-precision real Alpha X Plus Y (SAXPY)
loops. There is no need to measure multiple copies of
the same code.

• Multiple invocations: Codelets that are repeatedly
invoked with the same context in an application life-
time, have the same running time for each invoca-
tion. In applications where a single codelet is called
thousands of times, measuring only a few invocations
achieves significant gains in benchmarking time.

Codelets are a key ingredient in our benchmark reduction
strategy. Codelets allow us to break down a complex appli-
cation into a set of small code fragments. By working at a
fine granularity level we reveal much more redundancy. The
larger a code fragment is, the harder it is to find a similar
redundant fragment in another program. But, when codes
are broken into elementary pieces, it is common to find du-
plicate computation patterns [2] such as dot products, array
copies or reductions.

Our method first profiles the benchmark suite on a re-
ference architecture. After this initial profiling, it produces
a reduced set of microbenchmarks that can be reused on all
the target architectures and configurations.

The key idea is to cluster similar codelets together. Codelets
from the same cluster share the same features and should
react in the same way to architecture change. For exam-
ple, memory-bound codelets will benefit from faster caches,
whereas highly vectorized codelets will benefit from wider
vectors. Therefore, by measuring a single representative per
cluster we can extrapolate the performance of all its siblings.

Figure 1 presents the method composed of the following
five steps:

Step A runs each application through CF hotspot detec-
tor to analyze the source code and divide it into a set of
codelets.

Step B statically analyzes and profiles each codelet on the
architecture chosen as a reference. We measure both static
and dynamic features. Static features are extracted by the
MAQAO static loop analyzer [9, 15] which provides detailed
low-level performance metrics. Dynamic features are pro-
vided by Likwid 3.0 [28] which reads the hardware perfor-
mance counters. Each codelet is tagged with a feature vec-
tor that gathers MAQAO and Likwid measurements. The
feature vector is used as a performance signature to detect
similar codelets.

Step C groups codelets sharing similar feature vectors
into clusters.

Step D selects a representative for each cluster and ex-
tracts it as a standalone microbenchmark using CF extrac-
tor. The number of invocations in the microbenchmark is
set as small as possible without degrading measurement ac-
curacy.

Step E provides a model to predict performance of the
original codelets from the measurements of the representa-
tives.

Using this method we achieve significant speedups in bench-
marking time. First, because only one benchmark per clus-
ter is executed, and second, because it uses fewer invocations
than the original application.

Next section discusses existing approaches to the prob-
lem and highlights our contributions. Section 3 details steps
A to E of our methodology. Section 4 demonstrates our
method on two different benchmark suites: a set of Numeri-
cal Recipes codes and the NAS SER benchmarks. Section 5
discusses the limitations of our approach and future work.

2. RELATED WORK
Our paper builds upon different works which fall into three

broad categories:

• Techniques for code isolation or outlining

• Study of similarities among programs

• Benchmark reduction and subsetting

A first set of papers [1, 17, 22, 18] study code isola-
tion. Lee and Hall [17] introduce the concept of code isola-
tion for debugging and iterative performance tuning. Later
works [22, 18] apply isolation techniques to automatic code
tuning and specialization. Akel et al. [1] study under which
conditions codelets preserve the performance characteristics
of the original programs.

A second set of papers study similarities among programs,
in order to uncover hidden redundancies or predict perfor-
mance. Vandierendonck and Bosschere [29] analyze SPEC
CPU 2000 execution time. They group applications accord-
ing to their performance bottlenecks, showing that SPEC

CPU 2000 contains redundant benchmarks. Hoste et al. [13,
12, 11] use microarchitecture-independent metrics to build a
performance database that is used to predict performance of
new programs. Phansalkar et al. [23] use a similar approach
with hardware performance counters and statistical methods
to analyze the redundancy of the SPEC CPU 2006 bench-
mark suite. Compared to the whole benchmark suite, 6
integer programs and 8 floating point programs capture the
weighted average speedup with an error of 10% and 12%
respectively. Bienia et al. [4] study redundancy between
SPLASH-2 and PARSEC applications with statistical and
machine learning methods They use execution-driven simu-
lation with the Pin tool to characterize program’s workloads
and collect a large set of metrics, similar to the set used in
[11] and [23]. They use Principal Components Analysis to
improve the original feature space and hierarchical cluster-
ing to find redundancies between applications.

A third set of papers discusses benchmark reduction meth-
ods for speeding simulation time. Citron et al. [8] sur-
vey 173 papers from ISCA, Micro, and HPCA conferences
and criticize methods that only use a subset of applica-
tions from the SPEC CPU benchmark suite. They demon-
strate how projecting performance of a subset on the whole
benchmark suite can bias speedups and yield incorrect con-
clusions. Contrary to existing approaches, our subsetting
method does not remove entire applications from a bench-
mark suite, but only removes redundant fragments. Despite
reducing the total time required for the benchmark suite
evaluation, our method keeps the important performance
information from the whole suite.

Lafage and Seznec [16] propose a method to find slices of
a program that are representative for data cache simulation.
It uses hierarchical clustering on two metrics: memory spa-
tial locality and memory temporal locality. SimPoint [25,
26] is a tool which identifies similar program phases by com-
paring Basic Block Vectors (BBV). Phases are samples of
100M instructions. Simpoint reduces simulation time by
removing repeated phases. BBV are program dependent,
therefore SimPoint cannot use representatives of one pro-
gram to predict another. In constrast, our method can take
advantage of similarities across different applications. We
show in Section 4.4 that exploiting inter-applications re-
dundancies reduces the number of representatives while pre-
serving accuracy. Eeckhout et al. [10] extend SimPoint by
matching inter-application phases using microarchitecture-
independent features.

SimPoint and its extensions are similar to our work in that
they extract representative phases from an application. But
SimPoint must be used in a simulator, whereas our method
is more versatile since it produces C or Fortran codelets that
can be recompiled and run both on simulators and on real
hardware.

3. BENCHMARK REDUCTION STRATEGY

3.1 Codelet Detection
A codelet is a short fragment of source code without side-

effects. Therefore, it can be outlined and extracted as a stan-
dalone microbenchmark. Multiple approaches have been
presented for codelet identification and extraction [17, 22,
18]. In this paper we use the Codelet Finder tool (CF) [6]
to outline C and Fortran outermost loops as codelets. Akel
et al. [1] detail the CF identification and extraction process.

Applications

BT

Maqao

Likwid

Static & Dynamic
Profiling

Vectorization ratio

FLOPS/s

Cache Misses

...[]
Step A: Applications are outlined into

small code fragments, called codelets.

Clustering Model

f1
f2
f3
...

(Section 3.1)

Step B: Perform static and dynamic analysis on the reference

architecture to generate codelet's feature vectors.

(Section 3.2)

SP

codelets

BT

SP

Codelet

Detection BT

SP

(Section 3.3)

Step C: Using the proximity between

feature vectors we cluster similar

codelets.

(Section 3.4)

Step D: One representative per cluster

is selected and extracted as a self-

contained micro-benchmark.

(Section 3.5)

Step E: Representatives are measured

on target architectures. A model

extrapolates full benchmark results.

Representative

Extraction

Sandy Bridge

Atom

Core2

Full

Benchmarks

Results

Figure 1: Overview of the benchmark reduction method

The first step of our benchmark reduction strategy is to
use CF to identify the extractable codelets inside an appli-
cation for future profiling. In the NAS SER benchmarks the
detected codelets capture 92% of the execution time [1].

3.2 Profiling and Static Analysis
To detect similar codelets we measure performance fea-

tures, both static and dynamic. Static features are useful
to evaluate the assembly code quality and to detect perfor-
mance problems specific to the microarchitecture. MAQAO
static loop analysis [9, 15] provides a set of static metrics
for the innermost binary loops. Examples of such metrics
are the size of the loop, the pressure on dispatch ports, the
number of used registers, the type of instructions. To com-
pute these metrics, MAQAO disassembles and analyzes the
binary. Some MAQAO metrics, provide a lower bound on
performance by assuming that all the memory access hit
the L1 cache. For benchmarks with datasets larger than L1,
those metrics are less relevant. Hardware counters help us
to overcome this issue and deal with dynamic hazards.

To characterize the dynamic behavior of codelets, we use
a set of metrics provided by the Likwid tool [28]. Likwid
measures hardware performance counters and derives a set of
dynamic performance metrics such as execution time, cache
misses, floating point instructions per second, or memory
bandwidth.

To obtain accurate measurements, we automatically in-
strument the original source code enclosing each codelet be-
tween probes. The probes call Likwid’s API. We discard
codelets with execution time under one million cycles be-
cause they are too short to be accurately measured.

MAQAO and Likwid gather 76 different features. A sub-
set of these features produce codelets’ feature vectors. In
section 4.2 we present how the feature subset is selected.

3.3 Clustering Similar Codelets
The feature vectors are the codelets performance signa-

tures. Similar codelets share the same performance features
and problems. The clustering step groups codelets with close
feature vectors.

Let us consider N codelets named p1 to pN . Each codelet

has an associated feature vector ~fi. Features are normalized
to have unit variance and to be centered on zero. Normaliza-
tion ensures that features have equal weight when computing
a distance between two feature vectors. To evaluate the sim-
ilarity of two codelets pi and pj we compute the euclidean

distance between their feature vectors, ‖~fi − ~fj‖.
To cluster similar codelets, we use hierarchical clustering

withWard’s criterion [30]. Hierarchical clustering is a greedy
method. It starts with as many clusters as codelets. At
each step, Ward’s method merges a pair of clusters. The
pair is selected to minimize the total within-cluster variance
after the merge. The within-cluster variance of a cluster
Ck is defined as the variance of all the feature vectors of
codelets belonging to Ck. This variance is computed using
the euclidean norm. Reducing the within-cluster variance
forms compact clusters of codelets with close feature vectors.
The clustering method ends when a single cluster is left.
All the successive merges between clusters are recorded in a
dendrogram. The final number of clusters, K, is selected by
cutting the dendrogram at different heights. We offer two
choices in our implementation:

• The user manually sets a number K of clusters.

• K is automatically selected using the Elbow method [27]
which cuts the tree when the within-cluster variance
stops improving significantly.

3.4 Extracting Cluster Representatives
We assume that by measuring a single representative per

cluster we can estimate the performance of its siblings. A
representative must adequately capture the performance fea-
tures of its siblings: as a representative, we choose the codelet
closest to the cluster centroid.

The selected representative is extracted as a standalone
microbenchmark that can be compiled and run on the tar-
get architectures. CF [6] is able to produce a standalone
executable for a given codelet. CF runs the original appli-
cation and captures the memory accessed by the extracted
codelet. The memory state is saved into a memory dump
file. Then, CF generates a wrapper to build and execute
the codelet as a standalone program. The codelet wrapper
loads the memory dump file before a codelet is run to restore
the original execution environment. Akel et al [1] detail the
codelet extraction process.

To accurately time the standalone representative, we se-
lect a number of invocations so that the microbenchmark
runs at least during 1 ms with a minimum of 10 invoca-
tions. We then take the median measurement among the
invocations, to remove outliers.

The execution time of the microbenchmarks produced by
CF generally matches the execution time of the original
hotspot in the application. Yet for some ill-behaved codelets,
the microbenchmark performance differs. Akel et al. [1]
show that in the NAS benchmarks 19% of the codelets are
ill-behaved. They fall into two categories:

• Codelets which are invoked with different contexts and
various datasets during the lifetime of the application.
CF captures only the dataset for the first invocation
of a hotspot. Therefore, the microbenchmark only
matches the first invocation inside the application.

• Codelets which are compiled differently inside and out-
side the application. Modern compilers use heuristics
to measure the profitability and legality of an optimiza-
tion before it is applied. When a codelet is extracted
from the application, the code before and after the
hotspot is not preserved. This may affect the opti-
mizations that the compiler applies to the code.

The execution time of the representative is measured in
the target architectures and is used to predict its siblings’
performance. Therefore, it is very important for the rep-
resentative to be well-behaved. We have implemented the
following selection process:

1. Select representative.

2. Generate a stand-alone executable for the representa-
tive.

3. Compare the execution time for the representative and
the original (profiled at step B). Representative is an
ill-behaved codelet if its original and standalone exe-
cution differ by more than 10%.

4. If the representative is an ill-behaved codelet:

• Mark ill-behaved representative as ineligible and
start the selection process again.

• If all the siblings are ineligible, the cluster is de-
stroyed. Each ineligible codelet is moved to the
cluster containing its closest neighbor.

If a cluster is only composed of ill-behaved codelets, the
selection process reduces the number of clusters determined
by the elbow method. Nevertheless, this selection guaran-
tees that all representatives are well-behaved and therefore
faithful.

3.5 Prediction Model
Because codelets from the same clusters have similar per-

formance characteristics, we assume that they will similarly
react to architecture changes.

Let the average execution time per invocation be trefi for
the reference architecture and ttari for the target architec-
ture. For codelet pi, si = trefi /ttari is the speedup between
the reference and the target. We make the following as-
sumption in our model: codelets in the same clusters have
the same speedup when moving to a new architecture. In
particular, the speedup of any codelet from cluster Ck, is
close to srk , the speedup of the cluster representative,

∀pi ∈ Ck, si ≃ srk .

Therefore, measuring the set of representatives on the tar-
get architecture is enough to estimate the speedup of all the
clusters. We predict the performance of each original codelet
by using the following formula:

∀pi ∈ Ck, t
tar
i ≃ trefi ×

1

srk
= trefi ×

ttarrk

trefrk

.

These equations can be written in matrix form, ~ttarall ≃

M. ~ttarrepr, where ~ttarrepr is the vector that contains the mea-
surements of the representatives in the target architecture,
~ttarall are the predicted measurements for all the codelets, and
M is a N ×K matrix defined as,

Mi,k =







0 if pi /∈ Ck

t
ref
i

t
ref
rk

if pi ∈ Ck

In this formulation, the matrix M represents the model
that transforms representatives measurements into results
for all benchmarks.

4. EXPERIMENTS AND VALIDATION

4.1 Experimental Setup
Table 1 presents the machines used for experiments. They

belong to four different Intel CPU generations (Nehalem,
Core 2 Duo, Atom, and Sandy Bridge) and possess quite
distinct memory hierarchies. These machines were selected
to validate that our benchmark reduction strategy is appli-
cable on significantly different architectures. All the codelets
are profiled on Nehalem, the reference architecture, at step
B. The representatives are benchmarked on each target ar-
chitectures (Atom, Sandy Bridge, and Core 2) at step E.

We evaluate our method using two criteria: the predic-
tion error and the benchmarking reduction factor. For each

Reference Target

Nehalem Atom Core 2 Sandy Bridge

CPU L5609 D510 E7500 E31240
Frequency (GHz) 1.86 1.66 2.93 3.30
Cores 4 2 2 4
L1 cache (KB) 4×64 2×56 2×64 4×64
L2 cache (KB) 4×256 2×512 3 MB 4×256
L3 cache (MB) 12 - - 8
Ram (GB) 8 4 4 6

Table 1: Test architectures.

codelet, the prediction error is the difference between pre-
dicted and real measurements, computed as a percentage.
The benchmarking reduction factor is the ratio between the
execution times of the representatives and the full bench-
mark suite. These two metrics are tied. In practice, the
more clusters we add, the more we decrease the prediction
error. However, by adding more clusters we also increase the
number of representatives and therefore the benchmarking
time.

All benchmarks were compiled using Intel compiler 12.1.0
with the -O3 -xsse4.2 (Nehalem and Sandy Bridge) and -

O3 (Core2 and Atom) optimization level. We use two bench-
marks suites: 28 Numerical Recipes (NR) [24, 19] and 7 NAS
SER benchmarks [3].

Each NR code is composed of a single computation ker-
nel. There is a one-to-one mapping between the NR bench-
marks and the NR codelets extracted. Moreover, all the NR
codelets are well-behaved. NR codes are simple but cover a
large spectrum of algorithms. They will be used as a train-
ing set to find a pertinent set of features. As described in
section 3.3, the set of features is used to cluster together
similar codelets. Not all the 76 features are relevant to per-
formance benchmarking. To achieve accurate prediction, it
is important to select pertinent features.

The NAS benchmarks are more complex than NR codes
and produce 67 codelets. They are run with CLASS B
datasets. The NAS benchmarks are used to validate that
the feature set trained on NR can be successfully applied to
more complex benchmarks. The next section describes how
the feature set was selected on NR.

4.2 Feature Selection on Numerical Recipes
Irrelevant features add noise that degrades the clustering

and the prediction accuracy. Therefore, it is important to
wisely select features, keeping only those that adequately
represent program behavior and improve prediction.

Evaluating the 276 combinations of features is too costly.
To find a good set of features in a reasonable time, we use
genetic algorithms [31]. Genetic algorithms (GA) start with
a population of randomly generated individuals. In our case,
each individual represents a candidate feature set. This pop-
ulation evolves towards an optimal solution by recombining
the best individuals with crossover and mutation operators.

An individual is encoded as a 76 boolean vector. The ith

bit is set if and only if feature i is selected. For instance, the
vector with all bits set to one, corresponds to the individ-
ual containing all the 76 features. Crossover and mutation
operators are provided by the genalg [32] GNU R package.

To evaluate individuals, we consider the average predic-
tion error of NR benchmarks on two architectures: Atom
and Sandy Bridge. Best individuals should have a high pre-

Likwid dynamic features
- Floating point rate in MFLOPS.s−1

- L2 bandwidth in MB.s−1

- L3 miss rate
- Memory bandwidth in MB.s−1

MAQAO static features
- Bytes stored per cycle assuming L1 hits
- Data dependencies stalls
- Estimated IPC assuming only L1 hits
- Number of floating point DIV
- Number of SD instructions
- Pressure in dispatch port P1
- Ratio between ADD+SUB/MUL
- Vectorization ratio for Multiplications (FP)
- Vectorization ratio for Other (FP+INT)
- Vectorization ratio for Other (INT)

Table 2: Best feature set found with a genetic al-
gorithm evaluated with NR codelets on Atom and
Sandy Bridge.

K = 14 K = 24 elbow

error median average median average

Atom 1.8% 12% 0% 1.70%
Sandy Bridge 3.2% 9.30% 0% 0.97%

Table 4: Prediction errors on Numerical Recipes
with 14 and 24 clusters.

diction accuracy on both architectures but with a low num-
ber of representatives. To achieve this objective we choose
the fitness function: max(error atom, error sandybridge)×
K where K is the number of clusters. We intentionally leave
Core 2 and NAS benchmarks out of the training process to
fairly evaluate how our feature set fares on new architectures
and new benchmarks.

We perform 100 GA iterations for a population size of
1000, and a mutation probability of 0.01. The Genetic al-
gorithm converges to the optimal feature set presented in
Table 2 by generation 47. The four selected dynamic fea-
tures are computed using eight performance events that can
be precisely measured in a single run without multiplexing.

4.3 Numerical Recipes Evaluation
This section evaluates the clustering on NR codelets per-

formed with the feature set described in table 2. Table 3
shows a 14-group clustering built on the reference architec-
ture.

Despite depending on the reference architecture, our fea-
ture set is closely related to architecture-independent fea-
tures [13, 12]. For example, codelets can use scalar instruc-
tions (S), vector instructions (V), or a mix of both (V +
S). We manually analyzed the vectorization of the codelets,
Vec., and compared it to the vectorization ratio, Vec. %,
reported by MAQAO. They are highly correlated.

Our assumption is that codelets in the same clusters should
exhibit similar characteristics and behavior. An initial sup-
porting observation is that the vectorization is homogeneous
among clusters. We evaluate cluster similarity using two
other similarity criteria.

First, we note that many clusters are formed of codelets
with similar computation patterns. For example, cluster 10
gathers codelets that divide elements in a vector, cluster 11

cut for K = 14

C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Codelet

toeplz_1

rstrct_29

mprove_8

toeplz_4

realft_4

toeplz_3

svbksb_3

lop_13

toeplz_2

four1_2

tridag_2

tridag_1

ludcmp_4

hqr_15

relax2_26

svdcmp_14

svdcmp_13

hqr_13

hqr_12_sq

jacobi_5

hqr_12

svdcmp_11

elmhes_11

mprove_9

matadd_16

svdcmp_6

elmhes_10

balanc_3

Computation Pattern

DP: 2 simultaneous reductions

DP: MG Laplacian fine to coarse mesh transition

MP: Dense Matrix x vector product

DP: Vector multiply in asc./desc. order

DP: FFT butterfly computation

DP: 3 simultaneous reductions

SP: Dense Matrix x vector product

DP: Laplacian finite difference constant coefficients

DP: Vector multiply element wise in asc./desc. order

MP: First step FFT

DP: First order recurrence

DP: First order recurrence

SP: Dot product over lower half square matrix

SP: Addition on the diagonal elements of a matrix

DP: Red Black Sweeps Laplacian operator

DP: Vector divide element wise

DP: Norm + Vector divide

DP: Sum of the absolute values of a matrix column

SP: Sum of a square matrix

SP: Sum of the upper half of a square matrix

SP: Sum of the lower half of a square matrix

DP: Multiplying a matrix row by a scalar

DP: Linear combination of matrix rows

DP: Substracting a vector with a vector

DP: Sum of two square matrices element wise

DP: Sum of the absolute values of a matrix row

DP: Linear combination of matrix columns

DP: Vector multiply element wise

Stride

0 & 1 & −1

stencil

0 & 1

0 & 1

 0 & 2 & −2

0 & 1 & −1

0 & 1

stencil

 1 & −1

4

−1

0 & 1

0 & LDA & 1

LDA + 1

LDA & 0

0 & 1

1

0 & 1

0 & 1

0 & 1

0 & 1

 LDA

 LDA

1

1

0 & LDA

1

1

Vec.

V + S

V + S

V + S

S

S

V

V

V

S

S

S

S

V + S

S

S

V

V

V

V

V

V

S

S

V

V

V + S

V

V

Vec. %

 78

 83

 60

 20

 18

100

100

100

 0

 8

 0

 0

 83

 0

 10

100

100

100

100

100

100

 0

 0

100

100

 33

100

100

s

<0.24>

0.25

0.15

0.44

<0.42>

0.31

<0.35>

<0.20>

<0.36>

0.22

0.44

<0.32>

<0.45>

<0.39>

<0.12>

0.28

<0.17>

0.41

<0.46>

0.34

0.34

<0.33>

0.47

0.50

0.53

<0.30>

0.44

<0.47>

Table 3: NR clustering with 14 clusters and speedups on Atom. The dendrogram on the left shows the
hierarchical clustering of the codelets. The height of a dendrogram node is proportional to the distance
between the codelets it joins. The dashed line shows the dendrogram cut that produces 14 clusters. The
table on the right gives for each codelet: the cluster number C, the Computation Pattern, the Stride, the
Vectorization, and the Speedup on Atom s. The speedup of the selected representative is emphasized with
angle brackets.

e
rr

o
r

=
 0

%

e
rr

o
r

=
 3

.6
9
%

e
rr

o
r

=
 3

6
%

e
rr

o
r

=
 4

.5
2
%

e
rr

o
r

=
 0

%

Cluster 1 (s = 0.24) Cluster 2 (s = 0.42)

2

5

10

20

40

80

160

<t
oe

pl
z_

1>

rs
trc

t_
29

m
pr

ov
e_

8

to
ep

lz
_4

<r
ea

lft
_4

>

E
xe

c
u
ti
o
n
 t

im
e
 (

m
s
 /

 i
n
vo

c
a
ti
o
n
)

Reference (Nehalem) Atom real Atom predicted

Figure 2: Predicted and Real execution times on
Atom for clusters 1 and 2. Representatives are en-
closed in angle-brackets. They have a 0% prediction
error because they are directly measured. The rep-
resentative speedup is applied to all its siblings to
predict their target performance. Because the scale
is logarithmic, applying the speedup is depicted by
the arrow translation.

codelets that perform a reduced sum, cluster 14 codelets that
compute element-wise multiplications on vectors or columns.
The two ”Dense Matrix x vector product”codelets have been
separated because they use different floating point precision.

Second, the stride captures the distance between the data
points accessed by two successive iterations of a codelet. For
example, a stride of one means that the codelet is access-
ing memory sequentially. A stride of zero means an access
to a constant memory location. A Leading Dimension Ar-
ray (LDA) stride means a row-wise access to a column-wise
stored array. If a codelet has two or more types of stride, we
separate them with a ’&’ symbol. Stencil stride means that
the kernel uses a five points stencil to access the data. Clus-
ter 14 is composed only of codelets with contiguous access
to memory. Cluster 11 contains only (0 & 1) codelets: one
contiguous access to sweep the vector and one constant ac-
cess for the accumulator. Other clusters have more complex
stride behaviors.

The clustering is not perfect, but still gathers codelets
sharing similar computation patterns, stride accesses, and
vectorization.

Our second assumption, is that codelets with similar fea-
tures have similar speedups on the target architectures. Col-
umn s on the table shows Atom speedups. The two codelets
in cluster 10 suffer high slowdowns on Atom because they
use high-latency division operations. Our feature set cap-
tures this pattern and isolates them in their own cluster.

In most of the clusters, speedups are homogeneous. Close
codelets in the dendrogram such as in clusters 2, 3, or 14
exhibit close speedups. Yet in some clusters such as 10 or 12

Atom

Core 2

Sandy Bridge

0

1000

2000

3000

0

100

200

300

0

100

200

300

bt cg ft is lu mg sp

E
xe

c
u

ti
o

n
 t

im
e

 (
s
)

Reference Real Predicted

Figure 5: Predicted and Real execution times on the
target architecture compared to the execution time
on the reference architecture.

Reduction Total Reduced invocations Clustering

Atom 44.3 ×12 ×3.7
Core 2 24.7 ×8.7 ×2.8

Sandy Bridge 22.5 ×6.3 ×3.6

Table 5: Benchmarking reduction factor breakdown
with 18 representatives.

the speedups are distinct. Our dendrogram cut is too rough
and a higher number of clusters is needed. In this case, 24
clusters, as recommended by the elbow method, fix the most
striking discrepancies. Yet the 24 elbow clustering, though
more conservative in terms of prediction, is less interesting
to analyze because it has many singleton clusters.

We evaluate the prediction error using the 14 clusters’
representatives on Atom and Sandy Bridge. Figure 2 de-
tails the prediction model for the cluster 1 and 2. As ex-
pected, the representatives codelets toeplz_1 and realft_4

are perfectly predicted. The prediction is accurate except
for mprove_8. Table 3 dendrogram shows that slightly in-
creasing K puts the offending codelet in a different cluster.

Table 4 summarizes the prediction errors for all the NR
codelets on Atom and Sandy Bridge. The overall accuracy
of the prediction is good. Nevertheless, the NR were used
during the feature selection training. The feature set was
selected to minimize prediction accuracy. Next section vali-
dates our method on a different set of benchmarks and one
new architecture not used during training.

4.4 Subsetting the NAS Benchmark Suite
In this section we reuse the feature set trained on NR

benchmarks and validate our benchmark reduction method
on the NAS SER suite. We also evaluate a new target ar-
chitecture Core 2. We show that the number of clusters

0.15 0.19

0.97 1.00

1.98
1.89

0.0

0.5

1.0

1.5

2.0

Atom Core 2 Sandy Bridge

G
e

o
m

e
tr

ic
 m

e
a

n
 s

p
e

e
d

u
p

Real Speedup

Predicted Speedup

Figure 6: Geometric mean speedup per architecture.

selected by the elbow method provides a good trade-off be-
tween benchmarking reduction factor and prediction error.
Then we analyze codelets and applications prediction.

Benchmarking reduction versus prediction error.
Figure 3 shows the trade-off between prediction error and

benchmarking reduction factor while we increase the num-
ber of clusters. As expected the more clusters we add, the
lower the median error becomes. On the other hand, the
benchmarking reduction becomes less effective because we
have more codelets to run on the target architecture. The
dashed line in figure 3 marks the number of clusters cho-
sen by the elbow method, here 18. If needed, the user can
tune the number of clusters depending on what he wants to
optimize: faster benchmarking or lower prediction error.

The elbow clustering achieves a high reduction factor be-
tween 23 and 44, while maintaining a low prediction error
between 3.9% and 8%. Unsurprisingly, Atom, the most dif-
ferent architecture from the reference, has the highest pre-
diction error.

The benchmarking reduction comes from two factors. First,
representatives are benchmarked during a small number of
invocations as described in section 3.4. Second, by clustering
the codelets, only the representatives have to be measured.
Table 5 breaks down the contributions of the two factors.
The reduction due to clustering is close to the ratio between
the original number of codelets and the number of represen-
tatives, 67

18
≈ 3.7. It is not exactly the same, because some

codelets are longer than others.

Codelet performance prediction.
Figure 4 shows the predicted and real execution times on

Sandy Bridge. The boxes gather the codelets by application.
The applications may contain codelets coming from differ-
ent clusters with different speedups. The execution time on
Sandy Bridge is predicted with a median error of 5.8%. The
error mainly comes from short-lived codelets (less than 10
ms per invocation) which are more affected by measurement
errors such as instrumentation overhead. Codelets are faster
on Sandy Bridge than on the reference. It is not surprising
as Sandy Bridge frequency is almost twice the reference one.
The median prediction error is 8% for Atom and 3.9% for
Core 2.

Number of clusters

M
e
d
ia

n
 %

 e
rr

o
r

5

10

15

20

25

5 10 15 20

●

●

8%

x44

Atom

5 10 15 20

●

●

3.9%

x25

Core 2

5 10 15 20

0

10

20

30

40

50

B
e
n
c
h
m

a
rk

in
g
 r

e
d
u
c
ti
o
n
 f
a
c
to

r

●

●

5.8%

x23

Sandy Bridge

Median % error Benchmarking reduction factor

Figure 3: Evolution of prediction error and benchmarking reduction factor on NAS codelets as the number of
clusters increases. The dotted vertical line marks 18, the number of clusters selected by the elbow method.

bt cg ft is lu mg sp

5

10

25

50

100

200

500

5

10

25

50

100

200

500

1000

2000

1

2

5

10

25

50

100

200

500

10

25

50

100

200

500

1000

2000

4000

1

2

5

10

25

50

100

5

10

25

5

10

25

50

100

E
xe

c
u

ti
o

n
 t

im
e

 (
m

s
 /

 i
n
vo

c
a

ti
o

n
)

Reference (Nehalem) Sandy Bridge real Sandy Bridge predicted

Figure 4: Predicted and Real execution times on Sandy Bridge compared to the Nehalem reference execution.
Each box presents the codelets extracted from one of the NAS applications. Only three codelets in BT, LU,
and SP are mispredicted.

Application performance prediction.
Codelets capture 92% of the execution time of the original

NAS applications [1]. Therefore, by aggregating the individ-
ual codelet predictions, we accurately predict the original
applications performance.

The whole application prediction is done in two steps.
First, we estimate the speedup of the part of the application
covered by codelets. The application’s codelets predictions
are aggregated and weighted by their number of invocations.
Second, we assume that the speedup of the unknown part
of the application is equal to the one of the covered part.

Figure 5 shows the application prediction on the three
target architectures. Atom is significantly different from the
reference: it is an in-order processor, without L3 cache, nor
SSE4 vector instructions. Moving to Atom slows down all
the benchmarks. The prediction accuracy on Atom is high,
except for the Conjugate Gradient (CG) benchmark. CG’s
huge error is caused by a single codelet representing 95%
of its execution time. This codelet is well-behaved on Ne-
halem and is selected as the representative. Yet, on Atom
the extracted microbenchmark is much faster than the orig-
inal codelet and incurs 1.6 times less cache misses. The
microbenchmark is not preserving the cache state. This be-
havior was only observed on Atom.

On Sandy Bridge, all the applications are faster. Sandy
Bridge has the fastest frequency and a more modern mi-
croarchitecture than the reference. The prediction accu-
rately captures the speedups for all the original applications.

Core 2 microarchitecture is older than our reference, yet
it has a higher frequency. The performance between both
architectures is very close, providing an interesting challenge
for system selection. Indeed, the best architecture depends
on the application of interest. Some applications are faster,
like BT and FT, while other are slower, like LU. Our re-
duced benchmark set captures this behavior and correctly
predicts the trend allowing the user to smartly select the
best architecture depending on the application.

In order to evaluate the overall benefits of an architec-
ture, we compute the geometrical mean of the applications
speedups. Figure 6 shows the predicted and the real speedup
for each architecture. The reduced benchmarks accurately
predict the expected speedup for each architecture.

Capturing architecture change.
To illustrate how our method captures architecture change,

we consider two of the 18 clusters. Cluster A contains two
codelets, LU/erhs.f:49-57 and FT/appft.f:45-47. Both
are a triple-nested loop with high latency operations such
as division and exponential. They are computation bound.
Cluster B also contains two codelets, BT/rhs.f:266-311 and
SP/rhs.f:275-320. Both are computing a three-point sten-
cil on five planes. Cluster B codelets are memory bound.

Our features correctly separate the two performance pat-
terns: static IPC is high in cluster A whereas memory and
cache bandwidths are high in cluster B. The compute bound
cluster A is 1.37 times faster on Core 2 due to higher clock
frequency. On the contrary, the memory bound cluster B is
1.34 times slower on Core 2 because the last-level cache is
four times smaller than the reference. The clustering cor-
rectly separates the two behaviors producing an accurate
prediction for both groups.

Atom

Core 2

Sandy Bridge

10

20

30

40

50

10

20

30

40

10

20

30

40

0 5 10 15 20 25

Number of clusters

M
e

d
ia

n
 %

 e
rr

o
r Worst

Median

Best

GA features

Figure 7: Genetic-Algorithm feature clustering com-
pared to random clustering. For each number of
clusters, from 2 to 24, 1000 random clusters are
evaluated. Clustering with our GA feature set is
consistently close or better than the best random
clustering (out of 1000).

● ●

● ● ●
● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ● ●
● ●

●

●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Atom

Core 2

Sandy Bridge

10

20

30

40

10

20

30

40

10

20

30

40

0 5 10 15 20 25

Number of clusters

M
e
d

ia
n
 %

 e
rr

o
r

Subsetting ● Across Applications Per Application

Figure 8: Sharing representatives across applica-
tions is more efficient than per-application represen-
tatives. Shared representatives can exploit inter-
application redundancy, achieving low prediction er-
rors with less representatives.

Evaluation of the feature-guided clustering.
To evaluate the quality of our feature-guided clustering,

we compare it to 1000 random clusterings. In Figure 7, we
make K, the number of clusters, vary from 1 to 24. For each
value of K, we generate 1000 random partitionings into K
clusters. We compute the prediction error for each parti-
tioning after applying steps D and E. The proposed feature-
guided clustering is most of the time close or better than the
best random clustering. Our choice of features and cluster-
ing yields competitive results.

It is difficult to compare SimPoint [25, 26] and our method
directly, because SimPoint only runs in a simulator. Never-
theless, SimPoint uses Basic Block Vectors (BBV) to cluster
phases. Because BBV are application dependent, SimPoint
cannot use representatives of one program to predict an-
other. On the contrary, our approach is able to share rep-
resentatives across a set of applications. We evaluate the
benefits of subsetting across applications by comparing our
results to a subsetting where different applications do not
share representatives.

To simulate per-application subsetting, we execute Steps
A to E on each application separately, and aggregate the
results. The number of representatives is distributed evenly
among the separate applications. The number of represen-
tatives per application, varies from one up to twelve. MG
cannot be predicted with the per-application subsetting be-
cause its codelets are ill-behaved. Therefore, MG was ex-
cluded from the per-application error computation.

Figure 8 shows that subsetting across applications achieves
high accuracy with less representatives because it exploits
inter-application redundancy. Eeckhout et al. [10] reach sim-
ilar conclusions.

5. LIMITATIONS AND FUTURE WORK
Our methodology successfully accelerates benchmarking

on a wide range of Intel architectures. In this section we
discuss some of its drawbacks.

Overhead of reducing the benchmark suite.
Profiling the benchmarks on the reference architecture

and extracting the representatives is a costly process. For
instance, extracting the 18 codelets into microbenchmarks
from the NAS suite takes 380 minutes. If the user is only
interested in a single architecture, our method does not pay
off: it is quicker and more accurate to fully run the bench-
marks once. Yet, when comparing many target architec-
tures, typically for system selection, the overhead of profil-
ing and extracting the representatives is quickly amortized.
Also, the benchmarks are portable, so they can be extracted
once for a benchmark suite and reused by many different
users.

Feature Set.
Some of the features we consider are architecture-dependent.

When the reference and target architectures are of the same
family, as in this paper, the considered features are perti-
nent. They capture the different architecture performance
bottlenecks, and produce accurate predictions. However,
applying our method to a completely different architecture
such a GPU, may require some extensions. Architecture
independent metrics [13, 12] could generalize our method.

We would also like to extend our method to parallel appli-

cations by extending the set of considered metrics to capture
synchronization and communication bottlenecks [7].

6. CONCLUSION
This paper presents a methodology that significantly re-

duces benchmarking time and applies it to the system selec-
tion problem. Unlike previous work that selects a subset of
benchmarks at the application level, our method operates at
a finer level by extracting fragments of code, called codelets.
By detecting similar codelets within an application or across
different applications, we reduce a full benchmark suite to a
small set of representatives microbenchmarks.

On the NAS benchmarks, our methodology reduces the
benchmarking time up to 44 times with a prediction error
under 8%. The reduced subset accurately predicts the orig-
inal application speedups. It finds the best architecture for
each application at a low benchmarking cost.

The extracted microbenchmarks are portable source-code
snippets. Our method could be extended to other contexts
such as compiler regression test-suites or auto-tuning.

The data and code used in this paper are available as
an IPython Notebook [21, 20] that allows to reproduce our
experiments. The notebook can be accessed at http://

benchmark-subsetting.github.io/fgbs/.

Acknowledgements

The authors would like to thank Florent Conti for his in-
sightful comments and his help producing Figure 7.

This work has been conducted by the Exascale Computing
Research laboratory, thanks to the support of CEA, GENCI,
Intel, and UVSQ. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
CEA, GENCI, Intel, or UVSQ.

7. REFERENCES
[1] C. Akel, Y. Kashnikov, P. de Oliveira Castro, and

W. Jalby. Is Source-code Isolation Viable for
Performance Characterization? In Parallel Processing
Workshops (ICPPW), 2013 42nd International
Conference on. IEEE, 2013.

[2] M. Arenaz, J. Touriño, and R. Doallo. Xark: An
extensible framework for automatic recognition of
computational kernels. ACM Transactions on
Programming Languages and Systems (TOPLAS),
30(6):32, 2008.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
et al. The NAS parallel benchmarks summary and
preliminary results. In Supercomputing, 1991.
Supercomputing’91. Proceedings of the 1991
ACM/IEEE Conference on, pages 158–165. IEEE,
1991.

[4] C. Bienia, S. Kumar, and K. Li. PARSEC vs.
SPLASH-2: A quantitative comparison of two
multithreaded benchmark suites on
chip-multiprocessors. In Workload Characterization,
2008. IISWC 2008. IEEE International Symposium
on, pages 47–56. IEEE, 2008.

[5] R. Cammarota, A. Kejariwal, P. D’Alberto,
S. Panigrahi, A. V. Veidenbaum, and A. Nicolau.

Pruning hardware evaluation space via
correlation-driven application similarity analysis. In
Proceedings of the 8th ACM International Conference
on Computing Frontiers, page 4. ACM, 2011.

[6] CAPS entreprises. Codelet finder.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout.
Sampled simulation of multi-threaded applications. In
Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on,
pages 2–12. IEEE, 2013.

[8] D. Citron. MisSPECulation: partial and misleading
use of SPEC CPU2000 in computer architecture
conferences. In ACM SIGARCH Computer
Architecture News, volume 31, pages 52–61. ACM,
2003.

[9] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet,
J.-T. Acquaviva, W. Jalby, et al. Maqao: Modular
assembler quality analyzer and optimizer for itanium
2. In The 4th Workshop on EPIC architectures and
compiler technology, San Jose, 2005.

[10] L. Eeckhout, J. Sampson, and B. Calder. Exploiting
program microarchitecture independent characteristics
and phase behavior for reduced benchmark suite
simulation. In Workload Characterization Symposium,
2005. Proceedings of the IEEE International, pages
2–12. IEEE, 2005.

[11] K. Hoste and L. Eeckhout. Comparing benchmarks
using key microarchitecture-independent
characteristics. In Workload Characterization, 2006
IEEE International Symposium on, pages 83–92.
IEEE, 2006.

[12] K. Hoste and L. Eeckhout.
Microarchitecture-independent workload
characterization. Micro, IEEE, 27(3):63–72, 2007.

[13] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges,
L. K. John, and K. De Bosschere. Performance
prediction based on inherent program similarity. In
Proceedings of the 15th international conference on
Parallel architectures and compilation techniques,
pages 114–122. ACM, 2006.

[14] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John.
Measuring benchmark similarity using inherent
program characteristics. Computers, IEEE
Transactions on, 55(6):769–782, 2006.

[15] Y. Kashnikov, P. de Oliveira Castro, E. Oseret, and
W. Jalby. Evaluating architecture and compiler design
through static loop analysis. In High Performance
Computing and Simulation (HPCS), 2013
International Conference on, pages 535–544. IEEE,
2013.

[16] T. Lafage and A. Seznec. Choosing representative
slices of program execution for microarchitecture
simulations: A preliminary application to the data
stream. In Workload characterization of emerging
computer applications, pages 145–163. Springer, 2001.

[17] Y.-J. Lee and M. Hall. A code isolator: Isolating code
fragments from large programs. In Languages and
Compilers for High Performance Computing, pages
164–178. Springer, 2005.

[18] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas.
Effective source-to-source outlining to support whole
program empirical optimization. In Languages and

Compilers for Parallel Computing, pages 308–322.
Springer, 2010.

[19] J. Noudohouenou, V. Palomares, W. Jalby, D. C.
Wong, D. J. Kuck, and J. C. Beyler. Simsys: a
performance simulation framework. In Proceedings of
the 2013 Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, page 1.
ACM, 2013.

[20] F. Pérez and B. E. Granger. IPython: a System for
Interactive Scientific Computing. Comput. Sci. Eng.,
9(3):21–29, May 2007.

[21] F. Perez, B. E. Granger, and C. P. S. L. Obispo. An
open source framework for interactive, collaborative
and reproducible scientific computing and education.
2012.

[22] E. Petit, G. Papaure, F. Bodin, et al. Astex: a hot
path based thread extractor for distributed memory
system on a chip. In Proceedings of Compilers for
Parallel Computers workshop (CPC2006), 2006.

[23] A. Phansalkar, A. Joshi, and L. K. John. Analysis of
redundancy and application balance in the SPEC
CPU2006 benchmark suite. In ACM SIGARCH
Computer Architecture News, volume 35, pages
412–423. ACM, 2007.

[24] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical recipes: The art of
scientific computing. Cambridge university press, 1986.

[25] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In Parallel
Architectures and Compilation Techniques, 2001.
Proceedings. 2001 International Conference on, pages
3–14. IEEE, 2001.

[26] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In ACM SIGARCH Computer
Architecture News, volume 30, pages 45–57. ACM,
2002.

[27] R. Thorndike. Who belongs in the family?
Psychometrika, 18(4):267–276, 1953.

[28] J. Treibig, G. Hager, and G. Wellein. Likwid: A
lightweight performance-oriented tool suite for x86
multicore environments. In Parallel Processing
Workshops (ICPPW), 2010 39th International
Conference on, pages 207–216. IEEE, 2010.

[29] H. Vandierendonck and K. De Bosschere. Many
benchmarks stress the same bottlenecks. In Workshop
on Computer Architecture Evaluation Using
Commercial Workloads, 2004.

[30] J. H. Ward. Hierarchical grouping to optimize an
objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963.

[31] D. Whitley. A genetic algorithm tutorial. Statistics
and computing, 4(2):65–85, 1994.

[32] E. Willighagen. GNU R package ‘genalg’, 2013.

