PCERE: Fine-grained Parallel Benchmark
Decomposition for Scalability Prediction

Mihail Popov, Chadi Akel, Florent Conti, William Jalby, Pablo de Oliveira Castro
Université de Versailles Saint-Quentin-en-Y velines
Exascale Computing Research
Versailles, France
{mihail.popov,florent.conti,william.jalby,pablo.oliveira} @uvsq.fr
chadi.akel @exascale-computing.eu

Abstract—Evaluating the strong scalability of OpenMP appli-
cations is a costly and time-consuming process. It traditionally
requires executing the whole application multiple times with
different number of threads. We propose the Parallel Codelet
Extractor and REplayer (PCERE), a tool to reduce the cost
of scalability evaluation. PCERE decomposes applications into
small pieces called codelets: each codelet maps to an OpenMP
parallel region and can be replayed as a standalone program. To
accelerate scalability prediction, PCERE replays codelets while
varying the number of threads. Prediction speedup comes from
two key ideas. First, the number of invocations during replay
can be significantly reduced. Invocations that have the same
performance are grouped together and a single representative is
replayed. Second, sequential parts of the programs do not need
to be replayed for each different thread configuration. PCERE
codelets can be captured once and replayed accurately on multiple
architectures, enabling cross-architecture parallel performance
prediction. We evaluate PCERE on a C version of the NAS 3.0
Parallel Benchmarks (NPB). We achieve an average speed-up
of 25 x on evaluating OpenMP applications scalability with an
average error of 4.9% (median error of 1.7%).

Keywords—OpenMP applications; program replay; checkpoint
restart; parallel code isolation; scalability prediction; cross-
architecture performance prediction

I. INTRODUCTION

Parallel applications are costly to measure and optimize. In
this paper, we propose a decomposition technique that parti-
tions OpenMP applications into small pieces called codelets
and uses them to accelerate the benchmarking. Each inde-
pendent parallel region is extracted as a codelet that can be
replayed as a standalone program. Instead of studying the
whole application, we focus on each codelet separately.

We propose PCERE, an Intermediate Representation (IR)
level parallel code extractor based on the Low Level Virtual
Machine (LLVM) [1]. PCERE is an OpenMP extension of the
Codelet Extractor and REplayer (CERE) [2]. PCERE automat-
ically isolates the parallel regions of an OpenMP application
and allows each one to be replayed separately.

Benchmarking isolated parallel regions instead of whole
applications is attractive because the user can concentrate
on each codelet separately, with a reduced build and run
cost. Codelets can be individually modified to evaluate the
payoff of new optimizations or runtime parameters such as the
number of threads or the thread affinity. Different codelets may
expose different performance bottlenecks, and react differently

to optimizations. Isolating codelets allows tuning performance
at a fine-grain level.

PCERE codelets can also be used for fast parallel perfor-
mance prediction. We propose a model that predicts strong
scalability of parallel regions and applications in average
25 times faster than by running the original program. This
speedup is based on the two following key insights:

e A single OpenMP parallel region may be executed
multiple times in an application lifetime. Invocations
sharing similar execution contexts have the same
performance. Therefore, a single invocation replay is
sufficient to characterize the region execution time.
Codelets exploit this idea as they can be directly
replayed as few times as we want. This method is
usable only if the execution time of a parallel region
remains the same over different invocations.

e When varying the number of threads, performance
of sequential regions is not strongly impacted. With
codelets, scalability can be computed by only replay-
ing parallel regions; there is no need to replay the
sequential parts with different number of threads.

To predict the strong thread scalability of an application,
PCERE partitions it into codelets which are then replayed with
varying number of threads. A model based on Amdahl’s law
predicts the whole application scalability.

Parallel codelets can be replayed on micro-architectures
different from the one in which they were captured. Therefore
PCERE is able to predict the scalability on different target
micro-architectures.

Codelet based performance evaluation is only viable if the
codelets faithfully capture the original application behavior.
In this paper we show that PCERE faithfully replays the C-
only version of the NAS Parallel Benchmarks [3] on different
architectures with different number of threads.

The current PCERE version only supports C or C++
OpenMP applications. Most of the NPB 3.0 are written in
Fortran. To evaluate PCERE we propose an unofficial C
version of the NPB 3.0 OpenMP that is built upon the NPB
OMP 2.3 C version from the Omni Compiler Project [4].

The contributions of this paper are:

e PCERE: an open-source framework that extracts and
replays parallel regions codelets (Section IIT)

e A pure C version of the NPB OpenMP (Section IV-A)

e A systematic evaluation of PCERE replay accuracy on
the NPB OpenMP on three different architectures with
varying number of threads (Section IV-B).

e A fast scalability prediction model based on parallel
codelets (Section V).

II. BACKGROUND

This section discusses the relevant background for parallel
code extraction. First, we present the concept of code isolation.
Second, we show how compilers turn OpenMP directives into
parallel code. Third, we discuss how to apply code isolation
to OpenMP programs.

A. Code Isolation

Code isolation was proposed originally by Lee et al [5] as a
method to quickly debug and tune large applications. Usually,
in scientific applications, the hotspots represent a small fraction
of the total source lines [6]. Code isolation finds and extracts
the hotspots of an application as standalone codelets. Codelets
can be compiled and replayed independently from the original
application. For each codelet, the isolation process captures
the memory working set and the relevant machine state such
as the cache contents to achieve realistic replays.

Code isolation has been used to tune compiler options [7]
or to accelerate architecture selection [8]. Nevertheless, most
of the code isolation frameworks [5], [9], [10], [11], [12]
target sequential programs. PCERE extends the concept of
code isolation to multi-threaded OpenMP programs. Parallel
code isolation is discussed in section VI-A.

B. OpenMP Compiler Support

In OpenMP programs, the application concurrency is de-
scribed through a set of compiler directives and library calls.
For instance, a parallel region can be declared using the direc-
tive #pragma omp parallel. Figure 1 shows a simple C
OpenMP program where each thread prints its thread identifier.

PCERE is based on the LLVM compiler infrastructure [1],
which includes preliminary support for OpenMP 4.0 [13] since
version 3.4. Compiling and linking an OpenMP application
under LLVM requires the following steps:

1) Translation to IR The Clang front-end transforms C
or C++ code into LLVM IR.

2) Code Optimization LLVM optimizations passes are
applied to the IR.

3) Object generation and linking The IR is trans-
formed into object code and linked with the In-
tel/LLVM OpenMP runtime library [14].

In most compilers, including GCC and LLVM, parallel
directives are expanded in the front-end before doing any
code optimization [15]. Usually, the first step in OpenMP
expansion is outlining parallel regions. To outline a region the
compiler moves the region code inside a separate function. The
compiler preserves data dependencies by passing live-in and
live-out values through the outlined function arguments. Then

the original region is replaced by a call that spawns multiple
threads running the outlined function.

Figure 1 shows how LLVM expands a simple OpenMP
directive and the IR code it produces. LLVM outlines the
region code in a microtask function. kmpc fork, an
OpenMP Runtime library function, spawns a pool of threads.
Then, every thread runs the outlined microtask function
which describes the region parallel work.

C. Fartitioning OpenMP Programs into Codelets

Parallel codelets should satisfy three important properties.
First, each codelet must capture a specific region of code
in the original application. Second, it should be possible to
change the number of threads and other runtime parameters
at replay and it should be possible to replay codelets across
different architectures. Third, the set of extracted codelets must
faithfully capture the behavior of the original application so
that it can be used as a proxy for measuring performance
and scalability. In particular, each codelet replay must be
deterministic: different replays of the same codelet should
execute the same code and have the same performance.

Multi-threaded execution is a well known source of indeter-
minism: race conditions and synchronization delays between
threads may change the order of the operations from one
execution to the next. In particular, when multiple threads are
running, each one may be executing a different region of code.
This makes it difficult to isolate a particular region of code.

To avoid thread indeterminism issues, PCERE codelets start
at the beginning of a parallel region and finish at the end
of the region. Indeed, the beginning of an OpenMP region is
a global synchronization point where all threads positions in
the program are known. Capturing codelets at the start of the
region has another advantage: it enables changing the number
of threads at replay. Indeed, the capture happens just before
the call to kmpc fork that decides how many threads are
spawned.

Another advantage of capturing codelets just before a call
to kmpc fork is that it simplifies codelet portability. Tradi-
tional checkpoint techniques save a full dump of the memory
and of the register banks, including the Program Counter.
This approach requires that the replayed code keeps the same
code layout and uses exactly the same registers as during the
capture. It limits codelet portability to architectures sharing
the same register layout and does not enable recompiling and
replaying the code on a different architecture.

Because codelet capture happens just before a call to
kmpc fork, the application binary interface guarantees that
the codelet working set is either in memory or is passed as
arguments to the outlined function. This simplifies the mem-
ory capture process: only the memory and arguments to the
outlined function must be recorded. Also, the outlined function
prototype acts as a clean interface that allows us to recompile
and apply transformations to the codelet before replay. Because
no assumptions about the register layout are made, codelets are
portable across architectures that have similar memory layout,
such as word size and endianness. Our tests have shown that
our codelet replayer allows to recompile changing optimization
flags (capturing on —-O0 but replaying on —03) or changing

void main() define i32 @main() {
{ entry:
#pragma omp parallel
1l k fork_call @. icrotask.(...
int p = omp_get_thread_num(); call @__kmpc_fork_call @.omp_microtask.(>
printf("%d",p); }
}
¥ define internal void @.omp_microtask.(...) { Parallel region
entry: =
Clang OpenMP codelet
front end \l/
> | 1} ¢
C code LLVM simplified IR Thread execution model
Fig. 1. Clang outlines each C parallel region as an independent IR function:omp_microtask. The call to kmpc_fork spawns a pool of threads that runs

the outlined microtask.

micro-architectures (capturing on Nehalem and replaying on
Sandy Bridge, Core2, or Atom).

III. PCERE: PARALLEL CODELET EXTRACTION AND
REPLAY

This section gives an overview of PCERE architecture and
details the different technical challenges of codelet extraction
and replay.

A. Workflow Overview

Parallel code isolation consists of two main steps: cap-
ture and replay. During the capture, the original program
is instrumented with calls to our memory capture library.
The execution state is captured at the start of each parallel
region. During the replay, the user selects a particular region
to replay. PCERE generates a standalone codelet that restores
the execution context and jumps to the region of interest.

Figure 2 presents how a parallel region is captured as
a codelet and replayed. Both capture and replay require
special compilation passes to instrument the code with calls
to the capture and restore libraries, and to isolate parallel
regions. PCERE leverages the LLVM compiler framework to
implement the instrumentation and isolation passes. LLVM
provides a rich API for manipulating the IR code, which
greatly simplifies the process. PCERE instrumentation and
extraction passes operate after OpenMP directive outlining but
before the IR optimization passses.

The capture requires executing the application once to
get the execution context of all the parallel regions. If the
user wants to measure an application on a single architecture
with a fixed number of threads, extracting and replaying the
codelets does not pay off. It is quicker and more accurate to
fully measure the benchmark. But, if the user is interested
in comparing the performance of different architectures and
thread configurations, the codelet approach is quickly amor-
tized because codelets are only extracted once but replayed
many times. The overhead of codelet capture is discussed in
section V-A.

B. Capturing and Restoring the Execution Context

Before replaying a codelet, the memory state from the
original execution must be restored. This ensures that the
replay will be equivalent to the original run, even for data
dependent branching code. Three aspects need to be considered
at replay:

1) the working set of the parallel region must be re-
stored,

2) the cache must be warmed to avoid cold-start
bias [16],

3) the different data sets which induce performance
variations across invocations must be considered.

Checkpointing the original memory state must be done
before reaching the parallel region. In PCERE the memory
is captured just before the kmpc fork call. Capturing before
the fork allows to change at replay both the number of threads
and the architecture. The capture of the thread stack and the
Thread Local Storage (TLS) are also simplified as they are
handled by the kmpc fork.

In the rest of this section, we describe how the working set
and cache state are captured and restored, and how PCERE
handles the capture of regions where the performance is
different across working sets.

a) Working Set Capture:

To capture the working set, PCERE takes a full snapshot of the
original application address space. The application is frozen
using the ptrace system call, then a helper process dumps
the memory contents to disk, and returns the control to the
original application. Codelet Finder [11], [10], a sequential
code isolator tool, uses a similar technique. Full memory
dumps are large, but have the advantage of perfectly capturing
the memory layout, handling pointer aliasing, and preserving
the relative alignment and the offsets among data structures.

When replaying a codelet, PCERE instruments the
main function so that it immediately jumps to a special
run_codelet procedure. run_codelet restores the mem-
ory working state and runs the original parallel region by
directly calling kmpc fork on the outlined function.

Region

Parallel Capture of
OpenMP o . Capture
S e region —> representative
Applications T :
outlining working sets
__________________________ Y
Change number of threads O - Codelet
Hini Working sets
or al nity O) O memory dump Replay
Fast Warmup Generate
Retarget for
performance --—— aF -— codelets I t architect
prediction Replay wrapper irerent architecture
Fig. 2. Codelet capture and replay workflow
b) Cache warmup: 8e+08 p— s e om - A
To faithfully capture the performance of the original region
it is necessary to warm up the system to match the original
context as much as possible. Two main approaches have been 221087
. . . (0]
proposed in the literature. The first approach is to warm up °
the cache by running a few warmup executions of the codelet 01 .
itself [9], [11], [10]. It is an optimistic heuristic that assumes e
that the codelet working set is hot in the original run.

The second approach warms up the cache by replaying the 08400 30000 3000000000000 X0 x
history of the memory accesses in a simulator [17] or using 0 10 20 30 40 replay
a warmup routine [5]. These techniques are more accurate invocation
but require tracing the memory which is costly and incurs Fig. 3. MG resid execution time over the different invocations replayed

significant slowdowns [18].

The current version of PCERE uses the first approach
because it is simpler to implement and has a much lower
overhead. Our warmup heuristic distinguishes two types of
codelets: frequently-called codelets that have more than four
invocations in the original application and infrequently-called
codelets.

We assume that the working set of frequently-called
codelets is hot in the original application. The rationale is
that the first invocations in the original program have warmed
up the region working set. Therefore, for frequently-called
codelets, our warmup strategy runs the codelet four times
before replaying it for real. This number was determined
empirically.

For infrequently-called codelets, we assume that the work-
ing set is cold in the original run. Therefore we replay them
exactly as many times as in the original application.

Our experiments in section IV show that the optimistic
warmup is enough to accurately replay most of the NAS
parallel benchmark on three different architectures. Yet, in
future versions of PCERE we would like to offer more realistic
warmup strategies as discussed in section VIIL.

c) Codelets with different working sets: Most of the
codelets have a constant performance across invocations.
Therefore, a single working state snapshot is sufficient to
accurately replay all the invocations. If performance varies
across invocations, this simple capture strategy is insufficient.

with 4 threads on Nehalem. resid has three distinct performance classes.
To faithfully replay the parallel region, PCERE captures one working set
per performance class. Here the first, second, and seventh invocations were
captured and replayed.

Figure 3 presents the execution time across the different
invocations of resid which represents more than 50% of
MG execution time and is invoked 42 times. We observe
that resid has three different performance behaviors. Each
performance class corresponds to a different working set.
Performance classes can be automatically detected with a
clustering algorithm such as CLARA [19]. When a codelet
has different performance classes, we select a representative
invocation per class. During capture, PCERE saves a separate
memory dump for each representative invocation. The right
box in figure 3 shows the replay time of the three selected
representatives in resid. To predict the codelet whole replay
time, PCERE adds each representative execution time weighted
by the number of invocations that fall in its performance class.

C. Lock Support

To fully support replay of codelets using OpenMP lock
primitives, a special lock capture step is required.

OpenMP uses futex (fast userspace mutexes) calls to imple-
ment the lock support on Linux. Each futex requires a kernel
space wait queue. System calls are used to request operations
on the wait queue from user space. Our memory capture only

TABLE 1. THE TEST ARCHITECTURES USED IN THIS PAPER.

Core2 Nehalem Sandy Bridge
CPU E7500 Xeon E5620 ES
Frequency (GHz) 2.93 240 2.7
Sockets 1 2 2
Cores per socket 2 4 8
Threads per core 1 1 2
L1 cache (KB) 32 32 32
L2 cache (KB) 3MB 256 256
L3 cache (MB) - 12 20
Ram (GB) 4 24 64

saves the user space process memory, therefore it does not
preserve the state of the futex wait queue.

To properly support OpenMP locks, we need a special lock
capture step that detects all the locks accessed by a codelet.
This is achieved by intercepting calls to the lock OpenMP
library during capture.

Before replaying the codelet, the replay wrapper takes care
to properly initialize all the required locks in kernel space.

IV. PCERE EVALUATION

This section evaluates PCERE replay accuracy. The eval-
uation is done on an unofficial C version of the NAS Parallel
Benchmarks OpenMP.

A. Experimental Setup

The NAS Parallel Benchmarks (NPB) are an established
OpenMP benchmark suite and a good target to evaluate
PCERE prediction accuracy. Yet, most of the NPB are written
in Fortran and PCERE is built upon Clang which only supports
C and C++ OpenMP programs.

The Omni Compiler Project (OCP) [4] maintains an unof-
ficial C version of NPB 2.3. Unfortunately, it is based on an
outdated NPB 2.3 which was released in 1997. In particular,
in the NPB 2.3 version the OpenMP parallelism is coarse
grained: most of the benchmarks only have one huge parallel
region. This makes them a poor choice to evaluate PCERE. To
overcome this problem, we have updated the OCP unofficial
NAS benchmarks so that they mimic the structure of the NPB
3.0 OpenMP official version. This effort involved carefully
porting the changes in the official Fortran version to the
unofficial C version. Our 3.0 C version of NPB is publicly
available at http://benchmark-subsetting.github.io/cNPB.

The CG benchmark was slightly modified to overcome
a bug in LLVM OpenMP frontend. A global barrier was
added after omp for reduction clauses. According to
the OpenMP specification, this synchronization is implicit and
mandatory, but the current LLVM OpenMP implementation
does not honor it. This issue has since been reported and
corrected [20].

In this paper all the benchmarks were compiled at the
—-03 optimization level using Clang 3.4 and linked against
the Intel/LLVM runtime. The benchmarks were run using the
class A working set sizes. The thread affinity was set to Scatter
with a static work scheduling.

Table I presents our test architectures. They belong to three
different Intel CPU generations (Core2 Duo, Nehalem, and

Sandy Bridge) and possess quite distinct memory hierarchies.
These machines were selected to validate that PCERE replay
process is portable across micro-architectures.

B. Replay Accuracy

The codelet based benchmarking process is only viable if
the codelets faithfully capture the original application behavior.
In this section we evaluate the accuracy of the codelet replay.

Accuracy is defined as the relative difference between the
in vivo and in vitro execution times of a codelet. The in vivo
time is the time spent inside the codelet parallel region in the
original application. The in vitro time is the time measured
during the codelet standalone replay.

To evaluate accuracy, we extracted the full set of codelets
from all the NPB applications. As discussed in section II-C,
the extracted codelet set maps exactly to the parallel regions
of the original OpenMP application. We reduced this full set,
by removing the codelets that represent less than 5% of the
original execution time. Originally 59 codelets were captured,
and after filtering only 25 were kept. Then we measured the in
vivo and in vitro execution time for each codelet, and computed
the replay accuracy.

For the NPB benchmarks, the number of threads used
during capture had no impact on replay: the number of threads
can be freely changed at replay. Therefore, the thread number
during capture can be chosen arbitrarily. In our experiments
we ran capture using a single thread run.

Table II summarizes the replay accuracy over the NPB
codelet set measured on Nehalem. PCERE faithfully replays
most of the parallel regions: the in vivo and in vitro perfor-
mance is close. A single working set was enough to faithfully
replay the benchmarks parallel regions except for MG for
which we needed to extract multiple working sets to accurately
replay its in vivo execution time.

Only two codelets are misreplayed: SP xsolve and CG
residual norm. In both benchmarks, the error is due
to cache state differences between the in vivo and the in
vitro executions. Our optimistic warmup strategy is not ac-
curate enough for these two benchmarks. For instance, CG
residual norm working set is cold in the original run
but incorrectly warmed-up during replay. Section VII briefly
discusses how the warmup strategy could be improved.

V. PCERE SCALABILITY PREDICTION

Through fast codelet replay, PCERE is able to quickly
estimate the strong scalability of a parallel application. This
section evaluates the scalability prediction on the NPB 3.0.
Using PCERE scalability evaluation is 25 x cheaper than
measuring the original NPB and maintains a low 1.7% median
prediction error.

A. Prediction Model

Traditionally the scalability of an application is evaluated
by plotting the application execution time against the number
of parallel threads. This requires measuring one application
run for each thread configuration.

TABLE II. CODELET REPLAY ACCURACY
Benchmark Threads
Parallel region 1 2 4 8 | weight %
CG
conj grad iteration loop 11.18 8.05 0.23 2.66 95.8
conj grad residual norm 1226 11.27 | 31.756 3.08 66.4
MG
resid 0.68 0.03 1.19 0.46 535
psinv 1.42 1.07 0.57 1.43 22.8
interp 8.76 8.09 8.18 1.75 07.2
rprj3 1.31 3.15 2.09 7.27 05.8
norm2u3 0.12 0.89 1.53 0.14 05.6
zero3 4.03 4.86 546 1050 05.4
EP
main 0.01 2.00 0.10 1.36 99.99
IS
main random generator 0.22 0.50 0.52 3.76 80.6
rank 0.28 0.84 1.64 5.30 39.9
Sp
x solve | 23.27 17.37 10.59 4.37 33.4
z solve 2.64 1.30 1.86 2.07 30.9
y solve 8.46 5.55 6.66 5.61 32.7
compute rhs 1.61 1.60 2.1 0.57 26.8
BT
z solve 0.14 3.52 2.5 10.80 33.6
y solve 0.20 3.76 1.82 6.25 32.3
x solve 0.33 0.26 416 1113 30.5
compute rhs 0.84 0.77 0.08 234 11.1
FT
cffts2 0.38 2.58 3.29 3.20 313
cffts3 5.12 471 5.06 5.27 30.9
cffts1 1.29 0.99 0.11 0.84 30.7
compute indexmap 3.09 5.20 0.32 3.82 06.6
LU
ssor iteration 0.03 0.86 0.53 0.03 98.7
rhs 0.89 1.09 0.58 2.01 274

The table shows the relative error between the in vivo and in vitro
execution time for each NPB codelet over different thread configurations.
Measures were performed on Nehalem. The weight % column is the
contribution of the region to the total running time (the weight changes
across thread configurations, here we consider the maximum).

Amdahl’s law stipulates that the execution time 7'(n) of
an application being executed on n threads is,

T(n) = T(1) x (5 + 1),

where S is the fraction of the algorithm that is strictly serial.
In other words, increasing the number of threads will only
speedup parallel regions. Our scalability prediction model is
built upon this assumption. The invariant sequential regions
are measured only once. Thanks to codelets, only the parallel
regions are replayed for each different number of threads.

Our prediction method has two steps. First, initialization
extracts the codelet set and measures the sequential part of
each application, T,. Second, prediction replays the codelets
with different number of threads to predict the scalability of
the original applications.

Let C be the set of all the codelets of an application. Our
model estimates the application execution time with m threads
as,

Tpredicted(m) = Tseq + Z chitm(m) X 1NVOCe,
ceC

where invoc, is the number of invocations of codelet ¢ in

6le8 SP compute rhs
I Real
[Predicted
5 i
4 i
%]
<
1)
z
[4
£°
=]
c
p=}
o
2 .
1 i
0 1 2 4 8 16 32

Threads

Fig. 4. Real vs. PCERE execution time predictions on Sandy Bridge for the
SP compute rhs codelet

the original application, and 7V*"°(m) is the in vitro execution
time per invocation measured by replaying codelet ¢ with m
threads.

PCERE accelerates the benchmarking process because:

1) the sequential part is only measured once during the
initialization,

2) codelet replay is faster because the number of invo-
cations of the parallel regions is reduced.

PCERE scalability prediction acceleration is computed as
the ratio between the replay cost and the original application
execution time. The replay cost is the time needed to replay
all of the extracted codelets, it includes warmup time.

We do not take into account the cost of the initialization
step into the quantification of PCERE acceleration over the
benchmarking process. Indeed, codelets might be reused and
the extraction cost is only paid once. Codelets can even be
shared among different users, quickly amortizing the initial-
ization cost. For reference, the cost of the initialization step
is comparable to a full run of the initial benchmarks, with a
small overhead attributable to our additional compiler passes
and capture library calls. On the NPB suite BT has the worst
initialization overhead: 1.25 x the original execution time.

The prediction accuracy is quantified for m threads as the
relative error between Tprcdictea(m) and Treqi(m), the real
execution time of the application with m threads. The lower
this value is, the better our predictions are. The next section
evaluates the acceleration and prediction error on the NPB 3.0
on three test architectures.

B. Scalability Prediction Per Architecture

Table III details NPB prediction and benchmarking ac-
celeration over three different architectures. As explained in
section IV, codelets were extracted on a single thread.

Overall PCERE scalability prediction is fast and accurate.
Table IV summarizes the average accuracy and acceleration
over all the NPB. In figure 4 we compare the real and predicted

TABLE IV. AVERAGE SCALABILITY PREDICTION ACCURACY AND

ACCELERATION ON NPB

Core2 Nehalem Sandy Bridge

Accuracy 1.84% 2.9% 7.4%
Acceleration 252 274 23.7

Sandy Bridge higher prediction error comes from the inability of PCERE
to correctly predict scalability when hyper-threads are used. Not consid-
ering hyper-threaded runs lowers Sandy Bridge error to 5.9%.

execution time on SP compute rhs codelet which has the
biggest execution time per invocation within SP.

Problems are highlighted in gray on table III and explained
below:

e EP benchmark shows no acceleration at all with
our method. EP sequential part is negligible and its
single parallel region is only invoked once. Therefore
PCERE replay strategy is not faster than the original
run.

e IS has low accuracy on Sandy Bridge. This is because
the memory layout in IS depends on the number
of threads. A higher number of threads changes the
blocking and impacts the execution time of sequential
regions as demonstrated in [21]. This violates our base
assumption of invariant sequential execution time.

e On Sandy Bridge, replays running with 32 threads
show high misprediction errors. The test machine has
only 16 physical cores. PCERE warmup and replay
strategy is not accurate when hyper-threads are used.
We are investigating this issue.

C. Cross Architecture Prediction

PCERE codelets are portable: they can be extracted on an
architecture and replayed on another one. Architectures should
share the same memory layout, word size and endianness;
but the register layout and ISA can be different because our
checkpointing happens just before a function call, so only
the memory and function arguments need to be captured.
Therefore, it is possible to do cross architecture codelet replay
and scalability prediction.

To demonstrate cross-architecture portability, we extracted
the NPB codelets on Nehalem and replayed them on Sandy
Bridge. Table V summarizes the results. Overall accuracy is
high, except for CG replays and 32 threads replays.

As before, the misprediction with 32 threads is caused by
the inability of PCERE to correctly predict scalability when
hyper-threads are used. CG misprediction is caused by our
heuristic warmup which, in this case, proves to be insufficient.
Indeed our warmup strategy is optimistic: it assumes that the
working set is hot in the original execution, which is not true in
this scenario. Perspectives for improving the warmup strategy
are discussed in section VIIL

VI. RELATED WORK

Our work builds upon two different lines of research:
code isolation and sampled simulation of programs. Both
share the same objective: accelerating performance evaluation

of programs. Code isolation extracts pieces of a program
as standalone codelets whereas sampled simulation uses a
hardware simulator to replay a small set of representatives
phases in a program.

A. Code Isolation

Many sequential code isolat