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Why extracting code?

- Problem
- Benchmarking applications is costly.

- Break applications into stand alone programs
- « Piece-wise » benchmarking and optimisations.

o .
T

Stand alone versions

of hotspots

Application

- Extractible hotspots are called Codelets



04/10/2013 PSTI 2013 - Lyon

Codelets?

- In-vivo codelets: Hotspots inside the original application.

- In-vitro codelets: Stand alone hotspots extracted from the original
application.

The hotspot can be built,
modified, and run separately

C or Fortran application

Core Dump
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Faster Benchmarking

x401 - Cycles Per Instructions (CPI)
. Qxlo Error is 4,4%.

287 In Vivo - Benchmarking the application:
codelet : 215,32 seconds.
In vitro
codelet
- Benchmarking the in vitro
version: 0,98 second.
y_solve.f file from - Speedup of 214 in
NAS SP Benchmarking time.
Benchmark

« Can we always use codelets for performance characterization?
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Conditions
- To use Iin vitro benchmarking we need to guarantee that:
- The codelet can be extracted.
- The codelet has the same behavior in vivo and in vitro.
- To characterize an application:

- Extracted codelets must cover most of the application’s original
execution time.
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Related Work

- Code Isolator [Lee2004]
- Astex [Petit2006]
- Codelet Finder, CAPS Entreprise 2010.

- No complete comparison between in vivo and in vitro
codelets.
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Tools and Benchmarks

- Codelet Finder, CAPS Entreprise.

- Magao static loop analyzer.
- Likwid.

- NAS-SER:
- NASA Benchmarks.
- 8 Benchmarks.
- Class B data set size.

- Platform:

- Intel(R) Xeon(R) L5609 @ 1.87GHz with 12MB L3 cache
- 8 GB of RAM
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Codelet Finder

1. Detects loops at source level.
2. Extracts each loop as a separate codelet.
3. Runs the original application to capture the memory state.
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% of execution time captured by codelets

We extended Codelet Finder to support extraction of codelets
calling functions in other files.

Coverage ratio is sufficient to use codelets.
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Discrepancies

- Behavior must be the same between in vivo and in vitro
versions of a codelet.

- To verify this condition we need to:
- Analyse the causes of discrepancies.
- Improve matching.
- Quantifying discrepancies.

- Two types of discrepancies:
- Assembly discrepancies.
- Runtime discrepancies.
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Assembly Discrepancies

- Codelets are extracted at the source level.

- Drawback:
- Assembly code may differ between in vitro an in vivo codelets.

- Three causes of assembly discrepancies:
- Dereferencing.
- Interference with Loop Variables.
- Compiler Heuristics.
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Assembly Discrepancies
Interference with Loop Variables

- Function parameters can prevent some optimizations.
- Fix:
- Apply variable cloning to the loop and loop bound variables.

subroutine codelet (rhs,1i, j,k,m,
nzZ,ny2,nz2,dt)
INTEGER :: i, j, k, m, nzZ, ny2, nzZ, dt
do k=1, nzZ
de j=1, nvy2
do i=1, nx2
do m=1, &5
rhs{m, i, 73, k) =
rhs{m, i, j, k) =+ dt
end do; end do; end do; end do

Codelet extracted from NAS SP (scalar
Pentadiagonal solver)
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Runtime Discrepancies

- Most of the time, same assembly equals same runtime

behavior.

- Runtime behavior may be different:
- Different data per invocation.

Codelet Finder
captures the first
execution of a
hotspot
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Quantifying Discrepancies

Methodology
Assembly comparison Runtime comparison
- Conducted using the - Conducted using Likwid.
MAQAO static loop
analyser.

. Eor unroll Eactor. Nb ELOP |  For Intructions retired and
mul, Vec. ratio etc... CPI.

- Difference between those - Codelets runtime match if

characteristics must be difference is above 15%.
under 15%.
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Quantifying Assembly Discrepancies
Results

method -CF .Ioop-variable-fix + CF
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Quantifying Assembly Discrepancies

Results

method -CF .Ioop-variable-fix + CF
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Compiler fuses
loops more
aggressively inside
the application.

% of codelets with matching assembly

Bench name

LU MG SP
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Quantifying Runtime Discrepancies

Results

method - CF . loop-variable-fix + CF
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Quantifying Runtime Discrepancies

Results

method - CF . loop-variable-fix + CF
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Hotspots executed
with different data

per invocation.
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Results analysis

- Four scenarios:

- Assembly and Runtime matches: 52.1%
- Nothing matches: 6.9%
- Only Assembly matches: 11.5%

- |In vivo codelets invoked with different data.

- Only Runtime matches: 29.5%

- Different compiler optimizations.
- But did not impact the performance.
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Future Work

- Manage different dataset per invocation.

- Extend this study to include more architectures and
benchmarks.

- Evaluate in what measure codelets can be used for piece-
wise optimization of programs.

- Predict application performance using codelets.



04/10/2013 PSTI 2013 - Lyon

Conclusion

- Code isolation captures 92.3% of the total running time of
the original NAS benchmarks.

- Automated the loop-variable-fix.

- Overall for the NAS benchmarks:
- 63.6% of the codelets match the original hotspot assembly.
- 81.6% of the codelets match the original runtime behavior.

- Codelets can therefore be used to optimize or benchmark
an application most of the time.



