
IS SOURCE-CODE

ISOLATION VIABLE FOR

PERFORMANCE

CHARACTERIZATION?

 C. Akel, Y. Kashnikov, P. de Oliveira Castro, W. Jalby

University of Versailles

Exascale Computing Research

Why extracting code?
• Problem

• Benchmarking applications is costly.

• Break applications into stand alone programs

• « Piece-wise » benchmarking and optimisations.

• Extractible hotspots are called Codelets

04/10/2013 2

Application

Stand alone versions

of hotspots

Hotspots

PSTI 2013 - Lyon

Codelets?
• In-vivo codelets: Hotspots inside the original application.

• In-vitro codelets: Stand alone hotspots extracted from the original

application.

04/10/2013 3 PSTI 2013 - Lyon

Faster Benchmarking

• Cycles Per Instructions (CPI)

Error is 4,4%.

• Benchmarking the application:

215,32 seconds.

• Benchmarking the in vitro

version: 0,98 second.

• Speedup of 214 in

Benchmarking time.

04/10/2013 4

27

287

y_solve.f file from

NAS SP

Benchmark

x401

0,60 CPI

0,58 CPI

x10

In vivo

codelet
In vitro

codelet

• Can we always use codelets for performance characterization?

PSTI 2013 - Lyon

Conditions

• To use in vitro benchmarking we need to guarantee that:

• The codelet can be extracted.

• The codelet has the same behavior in vivo and in vitro.

• To characterize an application:

• Extracted codelets must cover most of the application’s original

execution time.

04/10/2013 5 PSTI 2013 - Lyon

Related Work

• Code Isolator [Lee2004]

• Astex [Petit2006]

• Codelet Finder, CAPS Entreprise 2010.

• No complete comparison between in vivo and in vitro

codelets.

04/10/2013 6 PSTI 2013 - Lyon

Tools and Benchmarks

• Codelet Finder, CAPS Entreprise.

• Maqao static loop analyzer.

• Likwid.

• NAS-SER:
• NASA Benchmarks.

• 8 Benchmarks.

• Class B data set size.

• Platform:
• Intel(R) Xeon(R) L5609 @ 1.87GHz with 12MB L3 cache

• 8 GB of RAM

04/10/2013 7 PSTI 2013 - Lyon

Codelet Finder
1. Detects loops at source level.

2. Extracts each loop as a separate codelet.

3. Runs the original application to capture the memory state.

04/10/2013 8 PSTI 2013 - Lyon

Coverage

• We extended Codelet Finder to support extraction of codelets

calling functions in other files.

• Coverage ratio is sufficient to use codelets.

04/10/2013 9 PSTI 2013 - Lyon

Discrepancies

• Behavior must be the same between in vivo and in vitro

versions of a codelet.

• To verify this condition we need to:

• Analyse the causes of discrepancies.

• Improve matching.

• Quantifying discrepancies.

• Two types of discrepancies:

• Assembly discrepancies.

• Runtime discrepancies.

04/10/2013 10 PSTI 2013 - Lyon

Assembly Discrepancies

• Codelets are extracted at the source level.

• Drawback:

• Assembly code may differ between in vitro an in vivo codelets.

• Three causes of assembly discrepancies:

• Dereferencing.

• Interference with Loop Variables.

• Compiler Heuristics.

04/10/2013 11 PSTI 2013 - Lyon

Assembly Discrepancies
Interference with Loop Variables
• Function parameters can prevent some optimizations.

• Fix:

• Apply variable cloning to the loop and loop bound variables.

04/10/2013 12

Codelet extracted from NAS SP (scalar

Pentadiagonal solver)

PSTI 2013 - Lyon

Runtime Discrepancies
• Most of the time, same assembly equals same runtime

behavior.

• Runtime behavior may be different:
• Different data per invocation.

04/10/2013 13

Codelet Finder

captures the first

execution of a

hotspot

PSTI 2013 - Lyon

Quantifying Discrepancies
Methodology

Assembly comparison

• Conducted using the
MAQAO static loop
analyser.

• For unroll Factor, Nb FLOP
mul, Vec. ratio etc…

• Difference between those
characteristics must be
under 15%.

Runtime comparison

• Conducted using Likwid.

• For Intructions retired and

CPI.

• Codelets runtime match if

difference is above 15%.

04/10/2013 14 PSTI 2013 - Lyon

Quantifying Assembly Discrepancies
Results

04/10/2013 15 PSTI 2013 - Lyon

Quantifying Assembly Discrepancies
Results

04/10/2013 16

Compiler fuses

loops more

aggressively inside

the application.

PSTI 2013 - Lyon

Quantifying Runtime Discrepancies
Results

04/10/2013 17 PSTI 2013 - Lyon

Quantifying Runtime Discrepancies
Results

04/10/2013 18

Hotspots executed

with different data

per invocation.

PSTI 2013 - Lyon

Results analysis

• Four scenarios:

• Assembly and Runtime matches: 52.1%

• Nothing matches: 6.9%

• Only Assembly matches: 11.5%
• In vivo codelets invoked with different data.

• Only Runtime matches: 29.5%
• Different compiler optimizations.

• But did not impact the performance.

04/10/2013 19 PSTI 2013 - Lyon

Future Work

• Manage different dataset per invocation.

• Extend this study to include more architectures and

benchmarks.

• Evaluate in what measure codelets can be used for piece-

wise optimization of programs.

• Predict application performance using codelets.

04/10/2013 20 PSTI 2013 - Lyon

Conclusion

• Code isolation captures 92.3% of the total running time of

the original NAS benchmarks.

• Automated the loop-variable-fix.

• Overall for the NAS benchmarks:

• 63.6% of the codelets match the original hotspot assembly.

• 81.6% of the codelets match the original runtime behavior.

• Codelets can therefore be used to optimize or benchmark

an application most of the time.

04/10/2013 21 PSTI 2013 - Lyon

