
Is Source-code Isolation Viable for Performance
Characterization?

Chadi Akel, Yuriy Kashnikov, Pablo de Oliveira Castro, William Jalby
Université de Versailles Saint-Quentin-en-Yvelines, France

Exascale Computing Research, France

Abstract—Source-code isolation finds and extracts the hotspots
of an application as independent isolated fragments of code,
called codelets. Codelets can be modified, compiled, run, and
measured independently from the original application. Source-
code isolation reduces benchmarking cost and allows piece-wise
optimization of an application. Source-code isolation is faster
than whole-program benchmarking and optimization since the
user can concentrate only on the bottlenecks.

This paper examines the viability of using isolated codelets in
place of the original application for performance characterization
and optimization. On the NAS benchmarks, we show that codelets
capture 92.3% of the original execution time. We present a set
of techniques for keeping codelets as faithful as possible to the
original hotspots: 63.6% of the codelets have the same assembly
as the original hotspots and 81.6% of the codelets have the same
run time performance as the original hotspots.

I. INTRODUCTION

Benchmarking scientific applications is a costly, but neces-
sary, process to validate software and hardware optimizations.
Usually, in scientific applications the performance critical
sections, or hotspots, represent a small fraction of the total
source lines [1]. Lee and Hall [2], Petit and Bodin [3], and
Liao et al. [4] propose to outline and isolate the hotspots
from the rest of the application to simplify benchmarking and
performance tuning. The source code is analyzed and hotspots
outlined; then isolated versions of the hotspots, called codelets,
are produced. Codelets can be compiled and run independently
from the original application. Breaking an application into
independent codelets provides multiple benefits:

• Benchmarking isolated hotspots instead of whole appli-
cations is attractive because the user can concentrate on
each hotspot separately, with a reduced build and run cost.

• Codelets can be individually modified to evaluate the
payoff of new optimizations.

• Different codelets may expose different performance bot-
tlenecks, and react differently to optimizations. Isolating
codelets can be used to tune performance at a fine-grain
level.

Nevertheless, this benchmarking process is only viable if the
codelets faithfully capture the original application performance
behavior. Yet, Lee and Hall observed a “fairly significant
variation in the performance monitoring results returned by
PAPI [between the original and isolated code].” In this paper,
we study the viability of source-code isolation for performance
characterization through three important questions that have
not been addressed by previous work:

C or Fortran application

for (i = 0; i < N ; i ++) {
 for (j = 0; j < N ; j ++) {
 a[i][j] += b[i]*c[j];
 }
}

.

.

.

.

.

.

In vivo Codelet

for (i = 0; i < N ; i ++) {
 for (j = 0; j < N ; j ++) {
 a[i][j] += b[i]*c[j];
 }
}

In vitro Codelet wrapper

Capture memory state Core Dump
a[], b[] and c[] data

The hotspot can be built,
modified, and run separately

h
o
ts

p
o
t

Fig. 1: Codelet extraction process.

• Coverage: What percentage of an application running
time can be captured with code isolation?

• Assembly fidelity: How close is the assembly code be-
tween the isolated and original versions?

• Runtime fidelity: How close is the runtime performance
between the isolated and original version?

Our study uses the Codelet Finder tool developed by CAPS
enterprise [5]. Figure 1 schematizes the codelet extraction
process of Codelet Finder. Codelet Finder isolates hotspots in
C and Fortran applications, and extracts them as separate
source files. It also captures the memory state in the initial
application to allow replaying the codelet with the same
dataset. In the rest of the paper we will use the following
terminology: a hotspot inside of the original application, is
called in vivo codelet. An isolated hotspot, compiled and run
independently from the original application, is called in vitro
codelet.

We evaluate codelets coverage and fidelity for the NAS 3.0
serial benchmarks [6] using dataset sizes in class B. All our
experiments were done on an Intel(R) Xeon(R) CPU L5609
@ 1.87GHz with 8GB of RAM and 12MB L3 cache.

II. CODELET FINDER OVERVIEW

Codelet Finder [5] deconstructs an application, by identify-
ing the hotspots and extracting them as standalone codelets.
Codelet Finder is an extension of the ASTEX hot path extrac-
tor [3] and is similar to Code Isolator [2]. Figure 2 presents
the workflow of codelet finder.

First, Codelet Finder profiles the target application using
the GNU profiler to detect the hotspots. The user does not
need to tweak the build process: Codelet Finder automati-
cally instruments and profiles the application. Second, Codelet

Finder analyzes each hotspot and marks all loops it contains.
Codelet Finder extracts each loop as a separate codelet. The
tool generates for each codelet a Makefile and a wrapper to
build and execute the hotspot as a standalone program. Finally,
Codelet Finder runs the original application and captures
the memory locations accessed by each extracted loop. The
memory state is saved into a memory dump file. The codelet
wrapper loads this file before a codelet is run to restore the
original execution environment.

Code Isolator [2] and Codelet Finder differ in the method
for capturing the execution environment. Codelet Isolator
analyzes the static data flow of the original application to
determine exactly which data structures need to be captured.
This method produces small dumps because only the needed
data is captured, but cannot deal with pointer aliasing. In
contrast, Codelet Finder extracts a full memory dump of the
memory of the original application. A full memory dump is
much larger but handles the pointer aliasing problem since
the full memory is recorded. It also preserves the relative
alignment and offsets between data structures.

Codelet Finder saves the original memory state to a file and
restores it before running a codelet in vitro, to preserve the in
vivo execution environment. Loading the memory state from
a file has the advantage of allowing the user to modify the file
to try the effect of different datasets. Yet, the dataset loading
mechanism of Codelet Finder has a huge overhead, since the
dataset has to be parsed and copied to memory.

Since we propose to use codelets to accelerate benchmark-
ing and optimization, it is important that the overhead of
running a hotspot in vitro is negligible. Therefore, we modified
the default memory restoration mechanism of Codelet Finder.
Instead of loading a dataset from a file at run time, we
directly patch the dataset into the BSS section of the codelet
ELF binary during the link phase. Therefore, the dataset is
directly mapped into memory by the Operating System when
the binary is loaded. By statically including the dataset in the
executable, the memory restoration overhead becomes almost
negligible.

III. MOTIVATING EXAMPLE: FASTER BENCHMARKING
WITH CODELET FINDER

In this section we show on a simple example, the benefits of
using code isolation for accelerating benchmarks. We consider
a hotspot from NAS SP (Scalar Pentadiagonal solver) extracted
from y_solve.f file between lines 27 and 287. This region
of code is executed 401 times in the original application and
represents more than 14.5% of the application execution time.

Codelet Finder isolates this hotspot and captures the original
dataset memory dump. The codelet wrapper executes a first
run of the hotspot to warm up the cache (details are further
described in section V-B). Then, we benchmark the hotspot:
we measure Cycles Per Instructions (CPI) on ten consecutive
calls of the hotspot to improve accuracy.

In the original application, we measured 0.58 CPI, whereas
in the isolated codelet we measured 0.60 CPI. The measure-
ment error is therefore 4.4%. Benchmarking the whole original

Codelet Function
Codelet Function

C or Fortran
code

Input Dataset

In
p

u
t

Detect Hot-Spots

Construct
Codelets

Capture memory
state (core-dump)

Codelet

Finder

Dynamic

Dynamic

Static
Codelet FunctionMakefile

+ Wrapper

I/O Dataset FileDataset File
(core-dump)O

u
tp

u
t
C

o
d

e
le

t

Fig. 2: Codelet Finder Workflow.

application took 215.32 seconds including the 401 calls to the
hotspot that took 31.17 seconds. In contrast, benchmarking
the in vitro codelet took 0.98 seconds because (1) only the
y_solve codelet was executed and (2) the hotspot was
invoked 10 times instead of 401 times. This represents a ×219
speedup in benchmarking time.

The 0.98 seconds can be decomposed in three subparts:
• 0.03 seconds were spend to launch the codelet wrapper,

they include the OS loading the binary to memory.
• 0.12 seconds were spend on the initial warm-up codelet

execution
• 0.83 seconds were spend on the benchmarked ten codelet

invocations
The warm-up execution is more costly because the accessed

data is not yet in cache.
This example demonstrates the huge speedup that can be

achieved when benchmarking isolated code. This method is
particularly interesting when the user is only interested in
measuring or optimizing the performance of a small fraction
of the total source code.

For this particular hotspot, the CPI measured in vitro was
accurate (4.4%) because the hotspot has the same behavior in
vivo and in vitro: assembly and runtime are close. Clearly to
use in vitro benchmarking we need to guarantee that:

• the codelet can be extracted
• the codelet has the same behavior in vivo and in vitro
In the following sections, we investigate if and when these

two conditions are satisfied for the NAS benchmarks.

IV. COVERAGE

To efficiently use codelets for benchmarking we must ensure
that the set of codelets extracted cover most of the application’s
original execution time.

The out-of-the-box version of Codelet Finder cannot extract
codelets that call functions defined in another source file. This
limitation was severely decreasing the coverage of Codelet

75.4%

85.5%

98.8%
95.0%

99.2%
95.0% 97.3%

92.3%

0

25

50

75

100

Average BT CG FT IS LU MG SP
Benchmark

%
 o

f e
xe

cu
tio

n
tim

e
ca

pt
ur

ed
 b

y
co

de
le

ts

Fig. 3: Execution time coverage of the extracted codelets in
NAS benchmarks.

Finder, therefore we extended Codelet Finder to support ex-
traction of codelets calling functions in other files. The results
that follow include our extension.

Figure 3 shows for each NAS benchmark the percentage of
execution time captured by codelets. On average, the extracted
codelets cover 92.3% of the execution time. MG has the lowest
coverage, at 75.4%. The missing 24.6% of the time is spent
outside of the hotspots extracted by Codelet Finder. There
are two reasons for this: (1) Codelet Finder only extracts
hotspots delimited by a loop, execution time spent outside of
loops cannot be captured. (2) The current version of Codelet
Finder does not extract hotspots that call external libraries or
manipulate file descriptors, since it cannot guarantee that the
extracted codelet preserves the runtime state of the original
application.

Despite these limitations, the coverage achieved by Codelet
Finder is over 75% for all the NAS benchmarks. This coverage
ratio seems sufficient to use codelets in place of the original
application for most performance studies.

V. DISCREPANCIES BETWEEN THE IN VIVO AND IN VITRO
CODELETS

Is the behavior of a codelet identical between the in vivo
and in vitro versions? If the answer is positive, then a codelet
can be used in place of the original hotspot for benchmarking
and code optimization. We approach this fundamental question
by analyzing the causes of discrepancies during code isolation,
providing mitigation techniques when possible, and quantify-
ing the similarity between in vivo and in vitro versions on the
NAS benchmarks. We separate discrepancies in two categories
assembly discrepancies and runtime discrepancies.

A. Assembly discrepancies

Code isolation tools extract codelets at the source level. This
allows to test multiple compilers or source code transforma-
tions but has a potential drawback: the assembly code com-
piled for the codelet (in vitro) may differ from the assembly
code compiled for the original hotspot in the application (in

vivo). Below we study three cases of assembly discrepancies
and how to mitigate them.

1) Dereferencing: In their Code Isolator paper [2] Lee and
Hall give an example of a codelet extracted from the nonlinear
finite element application LS-DYNA. In figure 4 we reproduce
Lee and Hall’s example.

We observe that the variables in the in vitro code of
figure 4 have been dereferenced. By passing the variables
by reference, it is easy to preserve the values modifications
during the codelet execution. This is a classic technique in
code outliers [4] which has the unfortunate side-effect of
disabling many compiler optimizations. The Intel Compiler
12.1.0 -O3 optimization level produces shorter and more
efficient assembly for the in vivo version than for the in vitro
version. The isolated code is also slower. With the original
dataset sizes used in [2], the isolated code is 1.26 times slower
(median of 15 executions).

To mitigate the problem with variable dereferencing the
variable cloning algorithm proposed by Liao et al. [4] is
effective. Variable cloning copies the pointer variables to fresh
local variables in the scope of the codelet.

Codelet Finder does not use the dereferencing technique
during inlining. Variables are passed directly by value as
parameters of the codelet wrapper. Therefore, Codelet Finder
produces matching in vivo and in vitro versions for the
example in figure 4.

2) Interference with Loop Variables: Codelet Finder is
subject to other problems, such as interference with loop
variables. The codelet in figure 5 is extracted with Codelet
Finder from the NAS SP benchmark. Because the codelet does
not use the rhs array after the computation, the compiler
is free to fully remove the codelet. Codelet Finder inserts
the cf_anti_dead_code calls to prevent the compiler
from applying dead code elimination to the whole loop;
cf_anti_dead_code is defined as an empty function.

Nevertheless, this causes further problems. Because of the
cf_anti_dead_code_(k) call, the compiler infers that
the loop variable k is live after the loop. This prevents
the compiler heuristics from fully unrolling the innermost
loop in the in vitro codelet, which it does in the in vivo
codelet. By introducing anti dead code calls on loop variables,
Codelet Finder hampers some compiler transformations, such
as unroll. Also loop variables and loop bound variables (nz2)
are declared as function parameters of the codelet wrapper. We
have observed that, in some cases, the compiler also does not
apply some optimizations for variables declared as function
parameters.

To fix these problem:
• we remove cf_anti_dead_code calls for loop vari-

ables which are not live-in after the loop
• we apply variable cloning [4] to the loop variables

and loop bound variables, so they are declared as local
variables instead of function parameters

We’ll refer to these optimizations as the loop-variable-
fix. Figure 6 shows the same SP codelet after applying these
modifications.

do 20 j=1, size
do 10 i=1, l_len

l(lp+1) = matrix(pl+i)
10 continue

lp = lp + 64
pl = pl + sl
sl = sl - 1

20 continue

(a) In vivo (original) codelet

void codelet(int *size, int *l_len,
float (*matrix)[], float (*l)[],
int *lp, int *pl, int *sl) {

int i, j;
for (j = 1; j < *size; j++) {

for (i = 1; i < *l_len; i++)
(*l)[*lp+i] = (*matrix)[*pl+i];

*lp = *lp + 64;

*pl = *pl + *sl;

*sl = *sl - 1;
}}

(b) In vitro (isolated) codelet

Fig. 4: In vivo and in vitro codelets extracted with Code Isolator [2] from LS-DYNA application.

subroutine codelet(rhs,i,j,k,m,
nz2,ny2,nz2,dt)

INTEGER :: i, j, k, m, nz2, ny2, nz2, dt
do k=1, nz2

do j=1, ny2
do i=1, nx2

do m=1, 5
rhs(m, i, j, k) =

rhs(m, i, j, k) * dt
end do; end do; end do; end do
call cf_anti_dead_code_(rhs)
call cf_anti_dead_code_(k)

! ...

Fig. 5: Codelet Finder codelet extracted from NAS SP (Scalar
Pentadiagonal solver) in the file rhs.f between lines 387 and
395.

subroutine codelet(rhs,i,j,k,m,
nz2,ny2,nz2,dt)

INTEGER :: i, j, k, m, nz2, ny2, nz2, dt

! variable cloning for variables involved
! in loop indexes or bounds
INTEGER :: i_cl, j_cl, k_cl, m_cl
INTEGER :: nz2_cl, ny2_cl, nx2_cl
i_cl = i ; j_cl = j ; k_cl = k; m_cl = m
nz2_cl = nz2 ; ny2_cl = ny2; nx2_cl = nx2

do k_cl=1, nz2_cl
do j_cl=1, ny2_cl

do i_cl=1, nx2_cl
do m_cl=1, 5

rhs(m_cl, i_cl, j_cl, k_cl) =
rhs(m_cl, i_cl, j_cl, k_cl) * dt

end do; end do; end do; end do
call cf_anti_dead_code_(rhs)

! ...

Fig. 6: NAS SP (Scalar Pentadiagonal solver) codelet with the
loop-variable-fix. All variables involved in loop indexes or
bounds are cloned.

3) Compiler Heuristics: Modern compilers use complex
checks to measure the profitability and legality of an opti-
mization before it is applied. When a codelets is extracted
from the application, the code before and after the hotspot is
not preserved. This may affect the optimizations that the com-
piler applies to the code, and therefore change the produced
assembly.

Also, the compiler high level optimization passes often
fuses or combine (unroll and jam) adjacent loops. If the two
neighbor loops are not extracted together in the same codelet,
the fusing transformation is no longer possible.

To mitigate these effects, we extract each hotspot with its
maximal context. That is to say, we extract codelets from
the outermost loop enclosing each hotspot. By preserving
each hotspot source context, we reduce the interference with
compiler heuristics and preserve complex transformations such
as fusion or unroll-and-jam.

B. Runtime Discrepancies

Most of the time codelets that have the same assembly in
vivo and in vitro have the same runtime behavior because both
versions are executed with the same dataset. Nevertheless, the
runtime behavior may be different if the state of the caches is
different or due to memory alignment problems.

Codelet Finder captures the memory state of the original
application just before entering a hotspot. The state of the
caches is not captured. When executing codelets in vitro, we
execute a first run to warm the caches and load the dataset in
memory.

In cases where in the original application the data accessed
was not in cache, warming up the cache in vitro may change
the runtime behavior because the number of misses will
change between the original application and the codelets.

Codelet Isolator [2] includes a method to restore the state
of the L1 cache by recording the memory accesses preceding
a codelet in the original application. Before running the
isolated codelet, the same memory accesses are prefetched.
This method preserves the L1 state between the in vivo and
in vitro versions but has not yet been implemented in Codelet
Finder.

MAQAO metric Description

Unroll factor Number of times the loop was unrolled by the
compiler

Nb instr. Number of instructions
Nb FLOP add-sub Number of floating point additions or subtrac-

tions instructions
Nb FLOP mul Number of floating point multiplication instruc-

tions
Nb FLOP div Number of floating point division instructions
Bytes stored Number of stored bytes per loop iteration
Bytes loaded Number of loaded bytes per loop iteration
Arith. Intensity Arithmetic intensity FLOP/(bytesloaded +

bytesstored)
Nb cycles P[0..5] Pressure on each dispatch port
Vec. ratio (%) INT Percentage of integer vector instructions
Vec. ratio (%) FP Percentage of floating vector instructions
Static IPC Static prediction of the IPC assuming all mem-

ory access hit L1

TABLE I: MAQAO metrics used to quantify assembly dis-
crepancy.

Codelets are also subject to alignment issues. Depending on
the architecture, the performance of a code may be affected
by false Store Forward stalls (4K aliasing), bank conflicts or
misaligned access [7]. Because Codelet Finder captures the full
memory state of the original application, the relative alignment
between arrays and data structures is preserved preventing
most of the alignment problems.

This section presented different types of discrepancies
between the in vivo and in vitro versions, and introduced
mitigation techniques such as the loop-variable-fix.

VI. QUANTIFYING DISCREPANCIES

We quantify the discrepancies between the in vivo and in
vitro versions for codelets extracted from NAS benchmarks.
For each codelet extracted we have tested for:

• assembly discrepancies, differences between the in vivo
and in vitro assembly code

• runtime discrepancies, differences between the in vivo
and in vitro runtime behavior

A. Methodology

All benchmarks and examples were compiled using Intel
compiler 12.1.0 with the -O3 flag. At this optimization
level, the Intel compiler applies aggressive optimizations such
as unroll-and-jam, inter procedural optimization or vectoriza-
tion.

The analysis was performed only on the significant NAS
hotspots. Therefore, we removed all codelets that capture less
than 1% of the application runtime. After removal, 44 codelets
remained over 226 codelets extracted.

The assembly analysis was conducted using the MAQAO
static loop analyzer [8], [9] which provides detailed assembly
characteristics. Directly comparing the assembly code of the
two versions would report many false positives in discrepan-
cies, such as identical assemblies that differ only in offsets
relative to the program counter, or identical assemblies that
differ only in the names of the registers they use. Therefore,

instead of directly comparing the assembly code, we compare
the set of assembly characteristics reported by the MAQAO
static analyzer detailed in Table I. We consider that the in vivo
and in vitro codelets match if the difference between those
characteristics is under 15% for all of them.

The runtime discrepancy analysis uses two metrics: instruc-
tions retired and CPI. Comparing the instruction retired metric
ensures that the in vivo and in vitro version execute the same
number of assembly instructions. CPI is the mean number of
cycles per instruction, this metric is used to check that the
performance of the two version is similar. To measure these
metrics we instrumented in vivo and in vitro codelets with Lik-
wid 3.0 [10]. Likwid introduces a small overhead necessary to
read performance counters. When instrumenting the codelets
we wrapped the codelet invocation in a repetition loop. By
measuring one hundred codelet executions we mitigate the
instrumentation overhead. Again we consider that the in vivo
and in vitro versions match if the difference in the above
metrics is less than 15%.

B. Results

Figure 7 summarizes the assembly discrepancy between
the in vivo and in vitro NAS codelets. Results are reported
per benchmark, bars show the percentage of codelets whose
assembly code matched between the in vivo and in vitro
version. Dark bars represent the matching with the out of the
box Codelet Finder version, Light bars represent the matching
after applying our loop-variable-fix.

For the Conjugate Gradient (CG) benchmark, no single
codelet matches between the in vivo and in vitro versions.
Codelets inside CG are large outer loops containing up to
five small inner loops. The compiler’s heuristics are fusing
the inner loops more aggressively in the in vivo version than
in the in vitro version. Therefore, the assemblies between in
vivo and in vitro do not match.

Without the loop-variable-fix the overall matching is 49%.
With the loop-variable-fix, the overall matching increases to
65%.

Figure 8 summarizes the runtime discrepancy between the
in vivo and in vitro codelets. Without the loop-variable-fix the
overall runtime matching is 58%. With the loop-variable-fix
the runtime matching increases to 81.6%.

Table II tallies the codelets in four categories depending if
their assembly match, their runtime match, both match, neither
match:

a) Assembly and Runtime matches: the most frequent
scenario with 52.1% of the codelets. Most of the time if
assembly is the same for the codelet and the application, the
in vivo and in vitro runtime will be similar.

b) Nothing matches: 6.9% of the codelets do not match
at assembly nor at runtime.

c) Only Assembly matches: This category considers
codelets which have the same assembly but have different
in vivo and in vitro runtimes. It’s an uncommon case that
happens for seven codelets in MG, FT and SP. In the original
benchmarks these seven codelets are invoked multiple times

0

25

50

75

100

Overall BT CG FT IS LU MG SP
Bench name

%
 o

f c
od

el
et

s
w

ith
 m

at
ch

in
g

as
se

m
bl

y

method CF loop-variable-fix + CF

Fig. 7: Percentage of matching assembly codelets between the
in vivo and in vitro codelets.

0

25

50

75

100

Overall BT CG FT IS LU MG SP
Bench name

%
 o

f c
od

el
et

s
m

at
ch

in
g

or
ig

in
al

 ru
nt

im
e

method CF loop-variable-fix + CF

Fig. 8: Percentage of codelets preserving the original runtime.

We partition codelets in four classes:
a) Run and Asm : in vivo and in vitro assembly and runtime match
b) Run: in vivo and in vitro runtime match
c) Asm: in vivo and in vitro assembly match
d) Nothing: in vivo and in vitro match neither at runtime nor at assembly

Bench Run and Asm (%) Run (%) Asm (%) Nothing(%)

BT 42.9 57.1 0.0 0.0
CG 0.0 100.0 0.0 0.0
FT 50.0 0.0 50.0 0.0
IS 33.3 66.7 0.0 0.0
LU 80.0 20.0 0.0 0.0
MG 0.0 0.0 60.0 40.0
SP 66.7 20.0 6.7 6.7

Overall 52.1 29.5 11.5 6.9

TABLE II: Runtime and Assembly matching between codelets.
Most of the codelets with matching assembly have matching
runtimes.

0.0%

7.9%

98.8%

84.4%

99.5%
95.0% 97.3%

69.0%

0

25

50

75

100

Average BT CG FT IS LU MG SP
Bench name

%
 o

f t
im

e
ca

pt
ur

ed
 b

y
m

at
ch

in
g

ho
ts

po
ts

Fig. 9: Percentage of time captured by codelets preserving the
original runtime.

with different dataset sizes. Because capturing memory dumps
is costly, Codelet Finder captures only the dataset for the first
call of a hotspot. Therefore the codelet execution matches only
the first invocation inside of the application. In our runtime
matching statistics we have counted this as a discrepancy
because the codelet runtime only matches the first invocation
but none of the others. If the user wants to study a different
dataset, Codelet Finder can be configured to capture the nth

dataset instead of the first.
d) Only Runtime matches: This category considers

codelets with matching runtime but different assembly be-
tween the in vivo and in vitro version. 29.5% of the codelets
are in this scenario. The assembly is different because of
compiler optimizations. The fact that the runtime is similar
means that the optimizations did not impact performance of
the hotspot. This is for example the case in CG, which has 0%
assembly matching, but achieves 100% runtime matching. CG
does not match at the assembly level because of aggressive
loop fusion in the in vivo codelet. Nevertheless, the fusion
does not affect the performance, therefore the in vivo and in
vitro runtime match.

Overall for the NAS benchmarks, 63.6% of the codelets
match the original hotspot assembly, and on our test
architecture 81.6% of the codelets match the original
runtime.

Codelets can therefore be used to optimize or benchmark
an application most of the time. But discrepancies should be
expected. Depending on the performance study goals, these
discrepancies can or cannot be tolerated.

Instead of counting how many codelets have matching
runtime, Figure 9 shows what percentage of the original appli-
cation runtime is captured by matching codelets. On average
matching codelets capture 69.0% of the original application
runtime.

We say that a codelet matches the original runtime if the

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
CPI discrepancy in vivo - in vitro (%)

co
un

t

Fig. 10: Distribution of the percentage discrepancy in CPI
between the in vivo and in vitro codelets.

difference in CPI and retired instructions between in vivo and
in vitro is less than 15%. But what is the median discrepancy
one can expect when using codelets? Figure 10 gives the
distribution of the runtime discrepancies between the in vivo
and in vitro codelets of NAS. The median CPI discrepancy
over all the codelets is 7.6%.

Discrepancies mainly occur due to aggressive compiler
optimizations. By lowering the optimization level, we can dra-
matically increase the number of assembly matching codelets.
For instance, when compiling with icc/ifort -O0, 88.6%
of NAS codelets have the same assembly in vivo and in
vitro. The 11.4% remaining discrepancies are due to small
differences in the memory addressing. For example, function
compute_rhs in SP uses a global array named rhs which
in the codelet becomes a locally allocated array. Because the
former is accessed using an absolute memory address and the
later is addressed through the stack, the assembly is slightly
different.

When using code isolation in a performance study, we
recommend to check which set of codelets match and discard
the others. If the runtime matching analysis is too costly, the
assembly matching analysis may be used in place. Indeed, we
show that codelets matching at the assembly level, usually
match at runtime. The only exception which happens for
seven codelets is when hotspots are called with many different
datasets in the same application.

VII. CONCLUSION

This paper examines the viability of code isolation for op-
timization and benchmarking. Code isolation allows to extract
the hotspots from a given application as independent micro-
benchmarks that can be modified, build and run independently
from the original application. Working with codelets instead
of whole applications lowers considerably the cost of opti-
mization or benchmarking. Yet, codelets can only be used for

this purpose if they faithfully represent the original application
runtime and assembly characteristics.

For the NAS benchmarks, we conclude that code isolation
captures 92.3% of the total running time of the original
applications. We show that 63.6% of the isolated codelets are
faithful to the original assembly and 81.6% of the codelets
match the original runtime. We have implemented a source-
to-source transformation tool that automatically performs the
loop-variable-fix described in section V-A.

As future works, we would like to extend this study to in-
clude more architectures and benchmarks, including industrial
HPC programs. In this paper we have shown that codelets can
be used for piece-wise characterization of programs; it would
be interesting to evaluate in what measure codelets can be
used for piece-wise optimization of programs by focusing a
performance auto-tuner on each separate codelet.

When using codelets in a performance study we recommend
to keep only the codelets that match. The cheap static assembly
check should be enough in most of the cases. Codelets
have already been used in performance studies. Kashnikov et
al. [11] used codelets to study the effects of compiler flags on
the performance of 144 benchmarks. Noudohouenou et al. [12]
propose a fast performance simulator based on codelets.

ACKNOWLEDGEMENTS

The authors would like to thank G. Carl Evans, Eric Petit,
Sandrine Piriou, and Mihail Popov for their precious help.

This work has been conducted by the Exascale Computing
Research laboratory, thanks to the support of CEA, GENCI,
Intel, UVSQ. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the CEA,
GENCI, Intel, or UVSQ.

REFERENCES

[1] D. E. Knuth, “An empirical study of Fortran programs,” Software:
Practice and Experience, vol. 1, no. 2, pp. 105–133, 1971.

[2] Y.-J. Lee and M. Hall, “A code isolator: Isolating code fragments from
large programs,” in Languages and Compilers for High Performance
Computing. Springer, 2005, pp. 164–178.

[3] E. Petit, G. Papaure, F. Bodin et al., “Astex: a hot path based thread
extractor for distributed memory system on a chip,” in Proceedings of
Compilers for Parallel Computers workshop (CPC2006), 2006.

[4] C. Liao, D. J. Quinlan, R. Vuduc, and T. Panas, “Effective source-to-
source outlining to support whole program empirical optimization,” in
Languages and Compilers for Parallel Computing. Springer, 2010, pp.
308–322.

[5] CAPS entreprises. Codelet finder. [Online]. Available: http://www.caps-
entreprise.com/

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks summary and preliminary
results,” in Supercomputing, 1991. Supercomputing’91. Proceedings of
the 1991 ACM/IEEE Conference on. IEEE, 1991, pp. 158–165.

[7] A. Fog, “The microarchitecture of intel and amd cpu’s: An optimization
guide for assembly programmers and compiler makers,” Copenhagen
University College of Engineering, 2013.

[8] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva,
W. Jalby et al., “Maqao: Modular assembler quality analyzer and
optimizer for itanium 2,” in The 4th Workshop on EPIC architectures
and compiler technology, San Jose, 2005.

[9] Y. Kashnikov, P. de Oliveira Castro, E. Oseret, and W. Jalby, “Evaluating
Architecture and Compiler Design through Static Loop Analysis,” in
High Performance Computing and Simulation (HPCS), 2013 Interna-
tional Conference on. IEEE Computer Society, (to appear) 2013.

[10] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International Con-
ference on. IEEE, 2010, pp. 207–216.

[11] Y. Kashnikov, J. C. Beyler, and W. Jalby, “Compiler optimizations:
Machine learning versus o3,” in Proceedings of the 25th international
conference on Languages and Compilers for Parallel Computing, ser.
LCPC’12, Tokyo, Japan, 2012.

[12] J. Noudohouenou, V. Palomares, W. Jalby, D. C. Wong, D. J. Kuck, and
J. C. Beyler, “Simsys: a performance simulation framework,” in Pro-
ceedings of the 2013 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools. ACM, 2013, p. 1.

