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Introduction

: French roadmap targets carbon
neutrality in 2050 (Stratégie Nationale Bas Carbone).
- Requires a

- HPC : modeling
and improving complex systems

- HPC . Frontier
system at ORNL
- More than 10 floating point
operations per second
- Consumes :the energy of a
small town (16 000 french houses)




Environmental impact of computation

- The ICT sector consumes ~ 5% of the energy wordwide

- It accounts for 1.8% - 2.8% of emitted GHG [Freitag, 2021] :

- Accounts for embodied emissions.
- Shadow energy during the whole life-cycle: mining,
fabrication, transportation, recycling.

- GHG emmissions are only one of the sustainability issues

- rare-earth mining and waste disposal (eg. Agbogbloshie).
- human-right abuses, health issues, pollution.

- This presentation focus on energy consumption of HPC



What about renewable energies?

- Low-carbon electricity is a limited ressource

- Decarbonation — huge increase in electricity demand

- Heating, Transportation, Industry
- Computing will compete for low-carbon electricity.



Energy consumption of HPC
Al energy and computation costs

More frugal computing?



Energy consumption of HPC




Evolution of processing units [Batten, 2023]
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Dennard’s scaling 1970-2005

CMOS Power P=1/2.CV? f4+V.ljeak
— ?,_/
P\ am static

For each generation, transistors dimensions reduced by 30%,

- Voltage and capacitance reduced by 30%

- Frequency increases: x1.4 ~1/0.7

- Surface halved: 0.5~ 0.7 x 0.7

- Power halved: AP =0.7 x 0.72 x 1/0.7 ~ 0.5

Power per surface unit remains constant but manufacturers
double number of transistors and frequency increases:

- Power efficiency doubles every 1.57 years
- Total power increases



Multicore 2005-2020

- At current scale, leak currents start increasing (Pstatic /).
Power wall slows Dennard’s scaling.
- Computing demand — parallelism and specialization.

- Number of cores increases exponentially since 2005.

- Power efficiency still improving:

- selectively turning-off inactive transistors;
- architecture design optimizations;
- software optimizations.



Al Accelerators 2020-2024

- For domain specific applications, such as Al, specialized
accelerators are used
- Memory and compute units tuned for a specific problem
(matrix multiplication) ;
- Faster and better power efficiency: GPU, TPU, FPGA, ASIC.



Analysis of TOP-100 HPC systems
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Rebound effects

- In 1865, Jevons shows that steam engine improvements
translate into increased coal consumption.

- In HPC, efficiency gains contribute to the rising
computation demand.
— net increase of the total power consumption.
- Rebound effects for data-centers [Masanet, 2020]

— 6% increase in energy consumption from 2010 to 2018
(255 % increase in nodes).

- Indirect rebound effects: computation advances can
contribute to the acceleration of other fields.
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Al energy and computation costs




Artificial Intelligence

- 2012: Al renaissance brought by increased data availability
and computation ressources

- breakthroughs in multiple domains
- many innovations : algorithms, specialized processors,
optimizations

- Most systems use neural networks :

- Training (stochastic gradient descent + backpropagation)
- Inference (forward pass)

- For both, the bottleneck is matrix multiplication

n



Training cost doubles every 3.4 mo
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Should we study training or inference?

- Training: huge cost but done once

- GPT3, 175 billion parameters, = 314 ZettaFLOP
- GPT4, 1.7 trillion parameters

- Inference: millions of users and requests

- 80-90% cost of a deployed Al system is spend on inference
[NVIDIA, 2019]
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More frugal computing?




Smaller precision / Smaller models for Al
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Tradeoff: Model complexity - Cost - Explainability

- Inference cost grows with model complexity

- Simpler models are often more interpretable
- Traditional science also prefers simpler models

- DNN not necessary for all tasks



Two case-studies in HPC

- Computing slower: DVFS for LU decomposition in KNM
architectures

- Computing less precisely: mixed precision in YALES2 solver



Measuring the energy?

- Wall watt-meters
- precisely measure the total consumption
- slow sampling resolution (~ 1s)
- hard to use within a super-computer

- Manufacturers energy-counters (rapl,
nvml, ...)
- easy to access and high sampling rate
- do not capture the whole system
consumption
- use power estimate models



RAPL vs. Yokogawa watt-meter

yoko --- rapl-pkg ~- rapl-ram rapl-total

RAPL estimates vs. Yokogawa watt-meter nbody 4 threads
i7-4770 (Haswell)

nbody 2 threads

copy 100M elements RAM

nbody 1 thread

idle
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DVFS study of LU decomposition
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When accounting for the whole system
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- Optimal 2.6 GHz : compute faster and turn off machine
- Saves idle power (race to idle)
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éﬁcorlo github.com/verificarlo/verificarlo

- Based on the LLVM compiler

- Active open source project with 15 contributors

- Backends: debugging (MCA, Cancellation) +
mixed-precision (Vprec)

- MCA overhead from x6 (binary32) to x160 (binary64).
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Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic.
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github.com/verificarlo/verificarlo

VPREC for mixed precision

- Estimate numerical effect of bfloat16, tensorflow32, fp24
on standard IEEE-754 hardware (before paying the porting
cost)

- VPREC emulates any range and precision fitting in original
type
- Uses native types for storage and intermediate
computations
- Handle overflows, underflows, denormals, NaN, +oo
- Rounding to nearest (faithful)
- Fast: x 2.6 to x 16.8 overhead

exponent eudo-mantis:
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YALES2 application

- Computational Fluid Dynamics solver from Coria-CNRS

- Deflated Preconditioned Conjugate
Gradient
- CG iterations alternate between a:

- Deflated coarse grid
- Fine grid

VPREC: Find minimal precision over
iterations that preserves convergence
(dichotomic exploration)

Automatic exploration of reduced floating-point representations in iterative

methods. Chatelain, Petit, de Oliveira Castro, Lartigue, Defour. Euro-Par 2019 ”



Mixed-precision on Yales2

Entire application Only Deflated part
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Energy 16% gain on the deflated part

Communication 28% gain on communication volume
Time 10% speedup on CRIANN cluster (560 nodes)
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Need for an interdisciplinary discussion

- Al / HPC can contribute towards sustainability (eg.
acceleration of weather forecast models)
.. but its energy cost must be reduced

- Efficiency:

- Improve hardware and software
- Use smaller models / smaller precision

... subject to rebound effects

- Frugality in computing:

- Balance computation cost vs. outcomes for each task
- Choose the right sized model
- Assess the environmental impact
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Exemple: e-health solution in Tanzania [d’Acremont, 2021]

Treatment of febrile children illnesess in dispensaries.

- IMCI: Paper-based decision tree WHO
- e-POCT CART tree tailored to real data on a standalone
tablet
- Final CART tree easy to interpret and manually checked
- Randomized-trial — better clinical outcomes and
antibiotic prescription reduction
- Sophisticated Al that continuously collects patient data
and adapts the algorithm ?
- Increase in hardware and computation costs.
- Loss in explainability and verification of the algorithm.

D'Acremont presentation: https://youtu.be/oKcy_cY0QOw
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